IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v60y2015icp105-109.html
   My bibliography  Save this article

Nonstandard utilities for lexicographically decomposable orderings

Author

Listed:
  • Rizza, Davide

Abstract

Using a basic theorem from mathematical logic, I show that there are field-extensions of R on which a class of orderings that do not admit any real-valued utility functions can be represented by uncountably large families of utility functions. These are the lexicographically decomposable orderings studied in Beardon et al. (2002a). A corollary to this result yields an uncountably large family of very simple utility functions for the lexicographic ordering of the real Cartesian plane. I generalise these results to the lexicographic ordering of Rn, for every n>2, and to lexicographic products of lexicographically decomposable chains. I conclude by showing how almost all of these results may be obtained without any appeal to the Axiom of Choice.

Suggested Citation

  • Rizza, Davide, 2015. "Nonstandard utilities for lexicographically decomposable orderings," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 105-109.
  • Handle: RePEc:eee:mateco:v:60:y:2015:i:c:p:105-109
    DOI: 10.1016/j.jmateco.2015.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406815000671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2015.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "Lexicographic decomposition of chains and the concept of a planar chain," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 95-104, April.
    2. Fishburn, Peter C. & Lavalle, Irving H., 1991. "Nonstandard nontransitive utility on mixture sets," Mathematical Social Sciences, Elsevier, vol. 21(3), pages 233-244, June.
    3. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "The non-existence of a utility function and the structure of non-representable preference relations," Journal of Mathematical Economics, Elsevier, vol. 37(1), pages 17-38, February.
    4. Lehmann, Daniel, 2001. "Expected Qualitative Utility Maximization," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 54-79, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herzberg, Frederik, 2009. "Elementary non-Archimedean utility theory," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 8-14, July.
    2. J. Alcantud & G. Bosi & M. Campión & J. Candeal & E. Induráin & C. Rodríguez-Palmero, 2008. "Continuous Utility Functions Through Scales," Theory and Decision, Springer, vol. 64(4), pages 479-494, June.
    3. Banerjee, Kuntal & Mitra, Tapan, 2018. "On Wold’s approach to representation of preferences," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 65-74.
    4. Caserta, A. & Giarlotta, A. & Watson, S., 2008. "Debreu-like properties of utility representations," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1161-1179, December.
    5. Tsoukias, Alexis, 2008. "From decision theory to decision aiding methodology," European Journal of Operational Research, Elsevier, vol. 187(1), pages 138-161, May.
    6. Dubra Juan & Echenique Federico, 2001. "Monotone Preferences over Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 1(1), pages 1-18, December.
    7. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    8. Jose C. R. Alcantud & Ghanshyam B. Mehta, 2005. "Constructive Utility Functions on Banach spaces," Microeconomics 0502003, University Library of Munich, Germany.
    9. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "Lexicographic decomposition of chains and the concept of a planar chain," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 95-104, April.
    10. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "The non-existence of a utility function and the structure of non-representable preference relations," Journal of Mathematical Economics, Elsevier, vol. 37(1), pages 17-38, February.
    11. Lumley, Thomas & Gillen, Daniel L., 2016. "Characterising transitive two-sample tests," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 118-123.
    12. Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban, 2006. "The existence of utility functions for weakly continuous preferences on a Banach space," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 227-237, March.
    13. Denis Bouyssou & Marc Pirlot, 2021. "Unit representation of semiorders II: The general case," Post-Print hal-02918017, HAL.
    14. Marcus Pivato, 2014. "Additive representation of separable preferences over infinite products," Theory and Decision, Springer, vol. 77(1), pages 31-83, June.
    15. Kaminski, B., 2007. "On quasi-orderings and multi-objective functions," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1591-1598, March.
    16. Abrísqueta, Francisco J. & Candeal, Juan C. & Induráin, Esteban & Zudaire, Margarita, 2009. "Scott-Suppes representability of semiorders: Internal conditions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 245-261, March.
    17. Tapan Mitra & M. Ozbek, 2013. "On representation of monotone preference orders in a sequence space," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 473-487, September.
    18. Knoblauch, Vicki, 2016. "Elections generate all binary relations on infinite sets," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 105-108.
    19. Herden, G. & Mehta, G. B., 2004. "The Debreu Gap Lemma and some generalizations," Journal of Mathematical Economics, Elsevier, vol. 40(7), pages 747-769, November.
    20. Francis C. Chu & Joseph Y. Halpern, 2004. "Great expectations. Part II: Generalized expected utility as a universal decision rule," Game Theory and Information 0411004, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:60:y:2015:i:c:p:105-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.