IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v44y2008i11p1152-1160.html
   My bibliography  Save this article

Is having a unique equilibrium robust?

Author

Listed:
  • Viossat, Yannick

Abstract

We investigate whether having a unique equilibrium (or a given number of equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and correlated equilibrium. We show that the set of n-player finite games with a unique correlated equilibrium is open, while this is not true of Nash equilibrium for n>2. The crucial lemma is that a unique correlated equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For instance, we show that generic two-person zero-sum games have a unique correlated equilibrium and that, while the set of symmetric bimatrix games with a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix games with a unique and quasi-strict symmetric Nash equilibrium is.

Suggested Citation

  • Viossat, Yannick, 2008. "Is having a unique equilibrium robust?," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1152-1160, December.
  • Handle: RePEc:eee:mateco:v:44:y:2008:i:11:p:1152-1160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(08)00009-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    2. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
    3. Raghavan, T.E.S., 2002. "Non-zero-sum two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 44, pages 1687-1721, Elsevier.
    4. Myerson, Roger B., 1997. "Dual Reduction and Elementary Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 183-202, October.
    5. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    6. Ritzberger, Klaus, 1994. "The Theory of Normal Form Games form the Differentiable Viewpoint," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 207-236.
    7. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    8. Forges, Francoise, 1990. "Correlated Equilibrium in Two-Person Zero-Sum Games," Econometrica, Econometric Society, vol. 58(2), pages 515-515, March.
    9. Noa Nitzan, 2005. "Tight Correlated Equilibrium," Discussion Paper Series dp394, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    10. M. J. M. Jansen, 1981. "Regularity and Stability of Equilibrium Points of Bimatrix Games," Mathematics of Operations Research, INFORMS, vol. 6(4), pages 530-550, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ezra Einy & Ori Haimanko & David Lagziel, 2022. "Strong robustness to incomplete information and the uniqueness of a correlated equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(1), pages 91-119, February.
    2. Yannick Viossat, 2010. "Properties and applications of dual reduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 53-68, July.
    3. Viossat, Yannick, 2008. "Evolutionary dynamics may eliminate all strategies used in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 27-43, July.
    4. Klis Anna A., 2019. "On the Openness of Unique Pure-Strategy Nash Equilibrium," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 19(1), pages 1-9, January.
    5. Kevin He & Fedor Sandomirskiy & Omer Tamuz, 2021. "Private Private Information," Papers 2112.14356, arXiv.org, revised Sep 2024.
    6. Lehrer, Ehud & Solan, Eilon & Viossat, Yannick, 2011. "Equilibrium payoffs of finite games," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 48-53, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannick Viossat, 2010. "Properties and applications of dual reduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 53-68, July.
    2. Yannick Viossat, 2005. "Openness of the set of games with a unique correlated equilibrium," Working Papers hal-00243016, HAL.
    3. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    4. Yannick Viossat, 2003. "Properties of Dual Reduction," Working Papers hal-00242992, HAL.
    5. Yannick Viossat, 2003. "Elementary Games and Games Whose Correlated Equilibrium Polytope Has Full Dimension," Working Papers hal-00242991, HAL.
    6. Yannick Viossat, 2003. "Geometry, Correlated Equilibria and Zero-Sum Games," Working Papers hal-00242993, HAL.
    7. Viossat, Yannick, 2006. "The Geometry of Nash Equilibria and Correlated Equilibria and a Generalization of Zero-Sum Games," SSE/EFI Working Paper Series in Economics and Finance 641, Stockholm School of Economics.
    8. Fabrizio Germano & Gábor Lugosi, 2007. "Existence of Sparsely Supported Correlated Equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 575-578, September.
    9. Michael Chwe, 2006. "Statistical Game Theory," Theory workshop papers 815595000000000004, UCLA Department of Economics.
    10. Jiang, Albert Xin & Leyton-Brown, Kevin, 2015. "Polynomial-time computation of exact correlated equilibrium in compact games," Games and Economic Behavior, Elsevier, vol. 91(C), pages 347-359.
    11. Tommaso Denti & Doron Ravid, 2023. "Robust Predictions in Games with Rational Inattention," Papers 2306.09964, arXiv.org.
    12. Noah Stein & Asuman Ozdaglar & Pablo Parrilo, 2011. "Structure of extreme correlated equilibria: a zero-sum example and its implications," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 749-767, November.
    13. Hillas, John & Samet, Dov, 2022. "Non-Bayesian correlated equilibrium as an expression of non-Bayesian rationality," Games and Economic Behavior, Elsevier, vol. 135(C), pages 1-15.
    14. Yannick Viossat, 2004. "Replicator Dynamics and Correlated Equilibrium," Working Papers hal-00242953, HAL.
    15. Ayala Mashiah-Yaakovi, 2015. "Correlated Equilibria in Stochastic Games with Borel Measurable Payoffs," Dynamic Games and Applications, Springer, vol. 5(1), pages 120-135, March.
    16. repec:dau:papers:123456789/3048 is not listed on IDEAS
    17. Lehrer, Ehud, 2003. "A wide range no-regret theorem," Games and Economic Behavior, Elsevier, vol. 42(1), pages 101-115, January.
    18. Robert Nau & Sabrina G Canovas & Pierre Hansen, 2005. "On the Geometry of Nash Equilibria and Correlated Equilibria," Levine's Bibliography 618897000000000961, UCLA Department of Economics.
    19. repec:dau:papers:123456789/5219 is not listed on IDEAS
    20. Robert Nau, 2015. "Risk-neutral equilibria of noncooperative games," Theory and Decision, Springer, vol. 78(2), pages 171-188, February.
    21. Jann, Ole & Schottmüller, Christoph, 2015. "Correlated equilibria in homogeneous good Bertrand competition," Journal of Mathematical Economics, Elsevier, vol. 57(C), pages 31-37.
    22. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:44:y:2008:i:11:p:1152-1160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.