IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v111y2024ics0304406824000089.html
   My bibliography  Save this article

Detecting profitable deviations

Author

Listed:
  • Rahman, David M.

Abstract

Rochet’s Theorem characterizes implementable allocations in a mechanism design environment in terms of cyclic monotonicity, a concept from convex analysis. In this paper, I offer an alternative approach to both the proof and interpretation of this result, based on linear duality. This duality reveals a formal relationship between incentives and detection, much like that between prices and quantities. Moreover, it allows me to extend Rochet’s Theorem and present a subdifferential characterization of implementing payments, revenue equivalence as differentiability of a value function, as well as budget-balanced implementation in terms of attributing innocence after unilateral deviations, together with other ancillary results.

Suggested Citation

  • Rahman, David M., 2024. "Detecting profitable deviations," Journal of Mathematical Economics, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:mateco:v:111:y:2024:i:c:s0304406824000089
    DOI: 10.1016/j.jmateco.2024.102946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406824000089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2024.102946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Gale, 1967. "A Geometric Duality Theorem with Economic Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(1), pages 19-24.
    2. Sushil Bikhchandani & Shurojit Chatterji & Ron Lavi & Ahuva Mu'alem & Noam Nisan & Arunava Sen, 2006. "Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implementation," Econometrica, Econometric Society, vol. 74(4), pages 1109-1132, July.
    3. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
    4. Kos, Nenad & Messner, Matthias, 2013. "Extremal incentive compatible transfers," Journal of Economic Theory, Elsevier, vol. 148(1), pages 134-164.
    5. Birgit Heydenreich & Rudolf Müller & Marc Uetz & Rakesh V. Vohra, 2009. "Characterization of Revenue Equivalence," Econometrica, Econometric Society, vol. 77(1), pages 307-316, January.
    6. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    7. Ludvig Sinander, 2022. "The Converse Envelope Theorem," Econometrica, Econometric Society, vol. 90(6), pages 2795-2819, November.
    8. David Rahman & Ichiro Obara, 2010. "Mediated Partnerships," Econometrica, Econometric Society, vol. 78(1), pages 285-308, January.
    9. David Rahman, 2012. "But Who Will Monitor the Monitor?," American Economic Review, American Economic Association, vol. 102(6), pages 2767-2797, October.
    10. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    11. Carbajal, Juan Carlos & Ely, Jeffrey C., 2013. "Mechanism design without revenue equivalence," Journal of Economic Theory, Elsevier, vol. 148(1), pages 104-133.
    12. Ludvig Sinander, 2019. "The converse envelope theorem," Papers 1909.11219, arXiv.org, revised Jun 2022.
    13. Itai Ashlagi & Mark Braverman & Avinatan Hassidim & Dov Monderer, 2010. "Monotonicity and Implementability," Econometrica, Econometric Society, vol. 78(5), pages 1749-1772, September.
    14. Rochet, Jean-Charles, 1987. "A necessary and sufficient condition for rationalizability in a quasi-linear context," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 191-200, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishra, Debasis & Pramanik, Anup & Roy, Souvik, 2014. "Multidimensional mechanism design in single peaked type spaces," Journal of Economic Theory, Elsevier, vol. 153(C), pages 103-116.
    2. Debasis Mishra & Anup Pramanik & Souvik Roy, 2013. "Implementation in multidimensional domains with ordinal restrictions," Discussion Papers 13-07, Indian Statistical Institute, Delhi.
    3. Frongillo, Rafael M. & Kash, Ian A., 2021. "General truthfulness characterizations via convex analysis," Games and Economic Behavior, Elsevier, vol. 130(C), pages 636-662.
    4. Carbajal, Juan Carlos & Müller, Rudolf, 2017. "Monotonicity and revenue equivalence domains by monotonic transformations in differences," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 29-35.
    5. Kazumura, Tomoya & Mishra, Debasis & Serizawa, Shigehiro, 2020. "Mechanism design without quasilinearity," Theoretical Economics, Econometric Society, vol. 15(2), May.
    6. Berger, A. & Müller, R.J. & Naeemi, S.H., 2010. "Path-monotonicity and incentive compatibility," Research Memorandum 035, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Carbajal, Juan Carlos & Ely, Jeffrey C., 2013. "Mechanism design without revenue equivalence," Journal of Economic Theory, Elsevier, vol. 148(1), pages 104-133.
    8. , & ,, 2013. "Implementation in multidimensional dichotomous domains," Theoretical Economics, Econometric Society, vol. 8(2), May.
    9. M. Yenmez, 2015. "Incentive compatible market design with applications," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 543-569, August.
    10. Carbajal, Juan Carlos & Müller, Rudolf, 2015. "Implementability under monotonic transformations in differences," Journal of Economic Theory, Elsevier, vol. 160(C), pages 114-131.
    11. Carbajal, Juan Carlos & Mu'alem, Ahuva, 2020. "Selling mechanisms for a financially constrained buyer," Games and Economic Behavior, Elsevier, vol. 124(C), pages 386-405.
    12. Kos, Nenad & Messner, Matthias, 2013. "Incentive compatibility in non-quasilinear environments," Economics Letters, Elsevier, vol. 121(1), pages 12-14.
    13. André Berger & Rudolf Müller & Seyed Hossein Naeemi, 2017. "Characterizing implementable allocation rules in multi-dimensional environments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 367-383, February.
    14. Paul H. Edelman & John A. Weymark, 2021. "Dominant strategy implementability and zero length cycles," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1091-1120, November.
    15. Katherine Cuff & Sunghoon Hong & Jesse Schwartz & Quan Wen & John Weymark, 2012. "Dominant strategy implementation with a convex product space of valuations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 567-597, July.
    16. Paul H. Edelman & John A Weymark, 2017. "Dominant Strategy Implementability, Zero Length Cycles, and Affine Maximizers," Vanderbilt University Department of Economics Working Papers 17-00002, Vanderbilt University Department of Economics.
    17. Carbajal, Juan Carlos & McLennan, Andrew & Tourky, Rabee, 2013. "Truthful implementation and preference aggregation in restricted domains," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1074-1101.
    18. Yoon, Kiho, 2020. "Implementability with contingent contracts," Economics Letters, Elsevier, vol. 188(C).
    19. Tomoya Kazumura & Debasis Mishra & Shigehiro Serizawa, 2017. "Strategy-proof multi-object allocation: Ex-post revenue maximization with no wastage," Working Papers e116, Tokyo Center for Economic Research.
    20. Tomoya Kazumura & Debasis Mishra & Shigehiro Serizawa, 2017. "Strategy-proof multi-object auction design: Ex-post revenue maximization with no wastage," Discussion Papers 17-03, Indian Statistical Institute, Delhi.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:111:y:2024:i:c:s0304406824000089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.