IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v99y2014icp1-18.html
   My bibliography  Save this article

Burbea–Rao divergence based statistics for testing uniform association

Author

Listed:
  • Jiménez-Gamero, M.D.
  • Alba-Fernández, M.V.
  • Estudillo-Martínez, M.D.

Abstract

Two families of tests for testing uniform association in cross-classification having ordered categories are considered. The test statistics of the tests in these two families are based on Burbea–Rao divergences between certain functions of the observed data. The objective of this paper is to compare these families. The comparison is done both theoretically and numerically. The theoretical study is based on asymptotic properties. For each family, two consistent approximations to the null distribution of the test statistic are studied: an estimation of the asymptotic null distribution and a bootstrap estimator. The power against fixed and local alternatives is also studied. Surprisingly, although the way in which each family measures deviations from the null hypothesis is rather different, the large sample power properties of these two families are quite similar, since both families are able to detect the same set of local alternatives. So, they should be compared for finite sample sizes. This task is numerically investigated through some simulation experiments.

Suggested Citation

  • Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Estudillo-Martínez, M.D., 2014. "Burbea–Rao divergence based statistics for testing uniform association," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 99(C), pages 1-18.
  • Handle: RePEc:eee:matcom:v:99:y:2014:i:c:p:1-18
    DOI: 10.1016/j.matcom.2013.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413000621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2013.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pardo, M. C., 1999. "On Burbea-Rao Divergence Based Goodness-of-Fit Tests for Multinomial Models," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 65-87, April.
    2. Y. Fujikoshi, 1977. "An asymptotic expansion for the distributions of the latent roots of the Wishart matrix with multiple population roots," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 379-387, December.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alba-Fernández, V. & Jiménez-Gamero, M.D., 2011. "Estimating Rao’s statistic distribution for testing uniform association in cross-classifications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 1978-1990.
    2. M. Jiménez-Gamero & R. Pino-Mejías & A. Rufián-Lizana, 2014. "Minimum $$K_{\phi }$$ K ϕ -divergence estimators for multinomial models and applications," Computational Statistics, Springer, vol. 29(1), pages 363-401, February.
    3. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    5. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    6. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    7. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    8. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    9. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
    10. Broze, Laurence & Gourieroux, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
    11. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    12. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    14. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    15. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    16. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    17. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    18. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    19. Özlem Onaran & Engelbert Stockhammer, 2006. "The effect of FDI and foreign trade on wages in the Central and Eastern European Countries in the post-transition era: A sectoral analysis," Department of Economics Working Papers wuwp094, Vienna University of Economics and Business, Department of Economics.
    20. Pan, Wei & Louis, Thomas A., 1999. "Two semi-parametric empirical Bayes estimators," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 185-196, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:99:y:2014:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.