IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v83y2012icp1-9.html
   My bibliography  Save this article

Testing for the Box–Cox parameter for an integrated process

Author

Listed:
  • Huang, Jian
  • Kobayashi, Masahito
  • McAleer, Michael

Abstract

This paper analyses the constant elasticity of volatility (CEV) model suggested by Chan et al. [K.C. Chan, G.A. Karolyi, F.A. Longstaff, A.B. Sanders, An empirical comparison of alternative models of the short-term interest rate, Journal of Finance 47 (1992) 1209–1227]. The CEV model without mean reversion is shown to be the inverse Box–Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator of the power parameter has a nonstandard asymptotic distribution, which is expressed as an integral of Brownian motions, when the data generating process is not mean reverting. However, it is shown that the t-ratio follows a standard normal distribution asymptotically, so that the use of the conventional t-test in analyzing the power parameter of the CEV model is justified even if there is no mean reversion, as is often the case in empirical research. The model may applied to ultra high frequency data.

Suggested Citation

  • Huang, Jian & Kobayashi, Masahito & McAleer, Michael, 2012. "Testing for the Box–Cox parameter for an integrated process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 1-9.
  • Handle: RePEc:eee:matcom:v:83:y:2012:i:c:p:1-9
    DOI: 10.1016/j.matcom.2008.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408001766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2008.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    4. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    5. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.
    8. Adkins, Lee C. & Krehbiel, Timothy, 1999. "Mean reversion and volatility of short-term London Interbank Offer Rates: An empirical comparison of competing models," International Review of Economics & Finance, Elsevier, vol. 8(1), pages 45-54, January.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    10. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(1), pages 232-261, February.
    11. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    12. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    13. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    14. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Huang & Masahito Kobayashi & Michael McAleer, 2009. "Testing the Box-Cox Parameter in an Integrated Process," CIRJE F-Series CIRJE-F-661, CIRJE, Faculty of Economics, University of Tokyo.
    2. Jian Huang & Masahito Kobayashi & Michael McAleer, 2010. "Testing the Box-Cox Parameter for an Integrated Process," KIER Working Papers 750, Kyoto University, Institute of Economic Research.
    3. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    4. Terence D.Agbeyegbe & Elena Goldman, 2005. "Estimation of threshold time series models using efficient jump MCMC," Economics Working Paper Archive at Hunter College 406, Hunter College Department of Economics, revised 2005.
    5. Emma M. Iglesias & Garry D. A. Phillips, 2020. "Further Results on Pseudo‐Maximum Likelihood Estimation and Testing in the Constant Elasticity of Variance Continuous Time Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 357-364, March.
    6. K. Fergusson & E. Platen, 2015. "Application Of Maximum Likelihood Estimation To Stochastic Short Rate Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-26, December.
    7. Peter Aling & Shakill Hassan, 2012. "No-Arbitrage One-Factor Models Of The South African Term Structure Of Interest Rates," South African Journal of Economics, Economic Society of South Africa, vol. 80(3), pages 301-318, September.
    8. Stefano Maria IACUS & Alessandro DE GREGORIO, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," Departmental Working Papers 2010-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    9. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    10. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    13. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    14. repec:wyi:journl:002108 is not listed on IDEAS
    15. Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    16. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    17. Li, Liuling & Mizrach, Bruce, 2010. "Tail return analysis of Bear Stearns' credit default swaps," Economic Modelling, Elsevier, vol. 27(6), pages 1529-1536, November.
    18. Nowman, K.B. & Yahia, B.B.H., 2008. "Euro and FIBOR interest rates: A continuous time modelling analysis," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1029-1035, December.
    19. V. Cvsa & P. Ritchken, 2001. "Pricing Claims Under GARCH-Level Dependent Interest Rate Processes," Management Science, INFORMS, vol. 47(12), pages 1693-1711, December.
    20. Cortazar, Gonzalo & Schwartz, Eduardo S. & Naranjo, Lorezo, 2003. "Term Structure Estimation in Low-Frequency Transaction Markets: A Kalman Filter Approach with Incomplete Panel-Data," University of California at Los Angeles, Anderson Graduate School of Management qt56h775cz, Anderson Graduate School of Management, UCLA.
    21. Bali, Turan G., 2003. "Modeling the stochastic behavior of short-term interest rates: Pricing implications for discount bonds," Journal of Banking & Finance, Elsevier, vol. 27(2), pages 201-228, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:83:y:2012:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.