IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i3p506-514.html
   My bibliography  Save this article

Monte Carlo algorithms for evaluating Sobol’ sensitivity indices

Author

Listed:
  • Dimov, I.
  • Georgieva, R.

Abstract

Sensitivity analysis is a powerful technique used to determine robustness, reliability and efficiency of a model. The main problem in this procedure is the evaluating total sensitivity indices that measure a parameter’s main effect and all the interactions involving that parameter. From a mathematical point of view this problem is presented by a set of multidimensional integrals. In this work a simple adaptive Monte Carlo technique for evaluating Sobol’ sensitivity indices is developed. A comparison of accuracy and complexity of plain Monte Carlo and adaptive Monte Carlo algorithms is presented. Numerical experiments for evaluating integrals of different dimensions are performed.

Suggested Citation

  • Dimov, I. & Georgieva, R., 2010. "Monte Carlo algorithms for evaluating Sobol’ sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 506-514.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:3:p:506-514
    DOI: 10.1016/j.matcom.2009.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475409002936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2009.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacques, Julien & Lavergne, Christian & Devictor, Nicolas, 2006. "Sensitivity analysis in presence of model uncertainty and correlated inputs," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1126-1134.
    2. Karaivanova, Aneta & Dimov, Ivan, 1998. "Error analysis of an adaptive Monte Carlo method for numerical integration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(2), pages 201-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue-ping Chen & Jin-Guan Lin & Xiao-di Wang & Xing-fang Huang, 2015. "Further results on orthogonal arrays for the estimation of global sensitivity indices based on alias matrix," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 411-426, September.
    2. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    3. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Verleysen, Kevin & Parente, Alessandro & Contino, Francesco, 2021. "How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venelin Todorov & Ivan Dimov, 2022. "Innovative Digital Stochastic Methods for Multidimensional Sensitivity Analysis in Air Pollution Modelling," Mathematics, MDPI, vol. 10(12), pages 1-14, June.
    2. Broto, Baptiste & Bachoc, François & Depecker, Marine & Martinez, Jean-Marc, 2019. "Sensitivity indices for independent groups of variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 19-31.
    3. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    4. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    5. Blagojević, Nikola & Didier, Max & Stojadinović, Božidar, 2022. "Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    7. Salacinska, K. & El Serafy, G.Y. & Los, F.J. & Blauw, A., 2010. "Sensitivity analysis of the two dimensional application of the Generic Ecological Model (GEM) to algal bloom prediction in the North Sea," Ecological Modelling, Elsevier, vol. 221(2), pages 178-190.
    8. Venelin Todorov & Slavi Georgiev & Ivan Georgiev & Snezhinka Zaharieva & Ivan Dimov, 2023. "Optimizing Air Pollution Modeling with a Highly-Convergent Quasi-Monte Carlo Method: A Case Study on the UNI-DEM Framework," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    9. Haro Sandoval, Eduardo & Anstett-Collin, Floriane & Basset, Michel, 2012. "Sensitivity study of dynamic systems using polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 15-26.
    10. Alrefaei, Mahmoud H. & Abdul-Rahman, Houssam M., 2008. "An adaptive Monte Carlo integration algorithm with general division approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 49-59.
    11. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    12. Lin, Yan-Hui & Yam, Richard C.M., 2017. "Uncertainty importance measures of dependent transition rates for transient and steady state probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 402-409.
    13. Marie Hermant & Olivier Blanchard & Guillaume Perouel & Guillaume Boulanger & Mathilde Merlo & Virginie Desvignes, 2018. "Environmental Exposure of the Adult French Population to Permethrin," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 853-865, April.
    14. Iooss, Bertrand & Ribatet, Mathieu, 2009. "Global sensitivity analysis of computer models with functional inputs," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1194-1204.
    15. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:3:p:506-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.