IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i1p72-82.html
   My bibliography  Save this article

Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances

Author

Listed:
  • Bashkirtseva, Irina
  • Ryashko, Lev
  • Schurz, Henri

Abstract

An analysis of the classical Hopf differential system perturbed by multiplicative and additive noises is carried out. An explicit representation for the stationary probability density function is found as an analytical solution of related Fokker–Planck equation. The difference in the response of Hopf systems perturbed by additive and multiplicative random noises is investigated. That difference can be seen in the zone of the transition from the trivial equilibrium point to noisy limit cycle. A delaying shift of the Hopf bifurcation point induced by multiplicative noise is recognized. In fact, an explicit formula of the radius of the stochastic limit cycle as a function of the involved parameters is stated. The phenomenon of inverse stochastic bifurcation in which auto-oscillations are suppressed by multiplicative noise is clearly observed. Eventually, the analytical description of the probability density of the randomly forced Hopf system offers the excellent possibility to test and compare the accuracy of different numerical schemes with respect to the replication of stochastic limit cycles. The superiority of the linear-implicit trapezoidal-type method is demonstrated in this respect.

Suggested Citation

  • Bashkirtseva, Irina & Ryashko, Lev & Schurz, Henri, 2009. "Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 72-82.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:1:p:72-82
    DOI: 10.1016/j.chaos.2007.01.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907002615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Mallick & P. Marcq, 2003. "Stability analysis of a noise-induced Hopf bifurcation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 36(1), pages 119-128, November.
    2. Bashkirtseva, Irina & Ryashko, Lev, 2005. "Sensitivity and chaos control for the forced nonlinear oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1437-1451.
    3. Bashkirtseva, I.A. & Ryashko, L.B., 2004. "Stochastic sensitivity of 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(1), pages 55-67.
    4. Leung, H.K., 1998. "Stochastic Hopf bifurcation in a biased van der Pol model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 254(1), pages 146-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martiny, Emil S. & Jensen, Mogens H. & Heltberg, Mathias S., 2022. "Detecting limit cycles in stochastic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    3. Han, Ping & Wang, Liang & Xu, Wei & Zhang, Hongxia & Ren, Zhicong, 2021. "The stochastic P-bifurcation analysis of the impact system via the most probable response," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryashko, L. & Bashkirtseva, I. & Gubkin, A. & Stikhin, P., 2009. "Confidence tori in the analysis of stochastic 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 256-269.
    2. Slepukhina, E. & Ryashko, L. & Kügler, P., 2020. "Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Irina Bashkirtseva & Makar Pavletsov & Tatyana Perevalova & Lev Ryashko, 2023. "Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    4. Goharrizi, Amin Yazdanpanah & Khaki-Sedigh, Ali & Sepehri, Nariman, 2009. "Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2448-2455.
    5. Jochen Jungeilges & Tatyana Ryazanova, 2018. "Output volatility and savings in a stochastic Goodwin economy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 8(3), pages 355-380, December.
    6. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Martiny, Emil S. & Jensen, Mogens H. & Heltberg, Mathias S., 2022. "Detecting limit cycles in stochastic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Barrio, R. & Borczyk, W. & Breiter, S., 2009. "Spurious structures in chaos indicators maps," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1697-1714.
    11. Bashkirtseva, Irina & Perevalova, Tatyana & Ryashko, Lev, 2020. "Noise-induced shifts in dynamics of multi-rhythmic population SIP-model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. He, Qun & Xu, Wei & Rong, Haiwu & Fang, Tong, 2004. "Stochastic bifurcation in Duffing–Van der Pol oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 319-334.
    13. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    14. Mandal, Partha Sarathi, 2018. "Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 40-52.
    15. Bashkirtseva, Irina & Ryazanova, Tatyana & Ryashko, Lev, 2015. "Analysis of dynamic regimes in stochastically forced Kaldor model," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 96-104.
    16. Irina Bashkirtseva & Alexander Pisarchik & Lev Ryashko & Tatyana Ryazanova, 2016. "Excitability And Complex Mixed-Mode Oscillations In Stochastic Business Cycle Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(01n02), pages 1-16, February.
    17. Bashkirtseva, Irina & Ryashko, Lev, 2005. "Sensitivity and chaos control for the forced nonlinear oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1437-1451.
    18. Yihan Wang & Jinjie Zhu, 2023. "Spatial Effects of Phase Dynamics on Oscillators Close to Bifurcation," Mathematics, MDPI, vol. 11(11), pages 1-10, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:1:p:72-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.