IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v51y1999i1p119-132.html
   My bibliography  Save this article

Inverse fuzzy-process-model based direct adaptive control

Author

Listed:
  • Abonyi, János
  • Andersen, Hans
  • Nagy, Lajos
  • Szeifert, Ferenc

Abstract

This paper proposes a direct adaptive fuzzy-model-based control algorithm. The controller is based on an inverse semi-linguistic fuzzy process model, identified and adapted via input-matching technique. For the adaptation of the fuzzy model a general learning rule has been developed employing gradient-descent algorithm. The on-line learning ability of the fuzzy model allows the controller to be used in applications, where the knowledge to control the process does not exist or the process is subject to changes in its dynamic characteristics. To demonstrate the applicability of the method, a realistic simulation experiments were performed for a non-linear liquid level process. The proposed direct adaptive fuzzy logic controller is shown to be capable of handling non-linear and time-varying systems dynamics, providing good overall system performance.

Suggested Citation

  • Abonyi, János & Andersen, Hans & Nagy, Lajos & Szeifert, Ferenc, 1999. "Inverse fuzzy-process-model based direct adaptive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(1), pages 119-132.
  • Handle: RePEc:eee:matcom:v:51:y:1999:i:1:p:119-132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475499001421
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    3. Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
    4. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:51:y:1999:i:1:p:119-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.