IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v28y1986i2p91-113.html
   My bibliography  Save this article

The complexity of analog computation

Author

Listed:
  • Vergis, Anastasios
  • Steiglitz, Kenneth
  • Dickinson, Bradley

Abstract

We ask if analog computers can solve NP-complete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church's Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP we can draw conclusions about the operation of physical devices used for computation.

Suggested Citation

  • Vergis, Anastasios & Steiglitz, Kenneth & Dickinson, Bradley, 1986. "The complexity of analog computation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(2), pages 91-113.
  • Handle: RePEc:eee:matcom:v:28:y:1986:i:2:p:91-113
    DOI: 10.1016/0378-4754(86)90105-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475486901059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(86)90105-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Miehle, 1958. "Link-Length Minimization in Networks," Operations Research, INFORMS, vol. 6(2), pages 232-243, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Campagnolo & Cristopher Moore, 2000. "Upper and Lower Bounds on Continuous-Time Computation," Working Papers 00-06-030, Santa Fe Institute.
    2. Manuel Lameiras Campagnolo & Cristopher Moore & José Félix Costa, 1999. "Iteration, Inequalities, and Differentiability in Analog Computers," Working Papers 99-07-043, Santa Fe Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    3. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    5. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    6. Jianlin Jiang & Liyun Ling & Yan Gu & Su Zhang & Yibing Lv, 2023. "Customized Alternating Direction Methods of Multipliers for Generalized Multi-facility Weber Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 362-389, January.
    7. Franksen, Ole Immanuel & Grattan-Guinness, Ivor, 1989. "The earliest contribution to location theory? Spatio-economic equilibrium with Lamé and Clapeyron, 1829," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 31(3), pages 195-220.
    8. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    9. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    10. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    11. Amir Hossein Sadeghi & Ziyuan Sun & Amirreza Sahebi-Fakhrabad & Hamid Arzani & Robert Handfield, 2023. "A Mixed-Integer Linear Formulation for a Dynamic Modified Stochastic p-Median Problem in a Competitive Supply Chain Network Design," Logistics, MDPI, vol. 7(1), pages 1-24, March.
    12. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    13. Emad Alzubi & Bernd Noche, 2022. "A Multi-Objective Model to Find the Sustainable Location for Citrus Hub," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    14. D. H. Aneesh & A. Mohanapriya & P. Renjith & N. Sadagopan, 2022. "Steiner tree in k-star caterpillar convex bipartite graphs: a dichotomy," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1221-1247, September.
    15. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    16. Yan Gu & Jianlin Jiang & Shun Zhang, 2023. "Distributionally robust Weber problem with uncertain demand," Computational Optimization and Applications, Springer, vol. 85(3), pages 705-752, July.
    17. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:28:y:1986:i:2:p:91-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.