IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v227y2025icp226-240.html
   My bibliography  Save this article

Weak convergence of the split-step backward Euler method for stochastic delay integro-differential equations

Author

Listed:
  • Li, Yan
  • Xu, Qiuhong
  • Cao, Wanrong

Abstract

In this paper, our primary objective is to discuss the weak convergence of the split-step backward Euler (SSBE) method, renowned for its exceptional stability when used to solve a class of stochastic delay integro-differential equations (SDIDEs) characterized by global Lipschitz coefficients. Traditional weak convergence analysis techniques are not directly applicable to SDIDEs due to the absence of a Kolmogorov equation. To bridge this gap, we employ modified equations to establish an equivalence between the SSBE method used for solving the original SDIDEs and the Euler–Maruyama method applied to modified equations. By demonstrating first-order strong convergence between the solutions of SDIDEs and the modified equations, we establish the first-order weak convergence of the SSBE method for SDIDEs. Finally, we present numerical simulations to validate our theoretical findings.

Suggested Citation

  • Li, Yan & Xu, Qiuhong & Cao, Wanrong, 2025. "Weak convergence of the split-step backward Euler method for stochastic delay integro-differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 227(C), pages 226-240.
  • Handle: RePEc:eee:matcom:v:227:y:2025:i:c:p:226-240
    DOI: 10.1016/j.matcom.2024.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Linna & Mo, Haoyi & Deng, Feiqi, 2019. "Split-step theta method for stochastic delay integro-differential equations with mean square exponential stability," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 320-328.
    2. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021. "A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
    3. Hu, Peng & Huang, Chengming, 2018. "Delay dependent stability of stochastic split-step θ methods for stochastic delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 663-674.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    3. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Dineshkumar, Chendrayan & Jeong, Jae Hoon & Joo, Young Hoon, 2024. "Stochastic exponential stabilization and optimal control results for a class of fractional order equations," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    5. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    7. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Amr Abosenna & Ghada AlNemer & Boping Tian, 2024. "Convergence and Almost Sure Polynomial Stability of Partially Truncated Split-Step Theta Method for Stochastic Pantograph Models with Lévy Jumps," Mathematics, MDPI, vol. 12(13), pages 1-16, June.
    9. Zhang, Chuanlin & Ye, Guoju & Liu, Wei & Liu, Xuelong, 2024. "On controllability for Sobolev-type fuzzy Hilfer fractional integro-differential inclusions with Clarke subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    10. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    11. Song, Minghui & Geng, Yidan & Liu, Mingzhu, 2021. "Stability equivalence among stochastic differential equations and stochastic differential equations with piecewise continuous arguments and corresponding Euler-Maruyama methods," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    12. Yu Zhang & Enying Zhang & Longsuo Li, 2022. "The Improved Stability Analysis of Numerical Method for Stochastic Delay Differential Equations," Mathematics, MDPI, vol. 10(18), pages 1-7, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:227:y:2025:i:c:p:226-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.