IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v223y2024icp523-542.html
   My bibliography  Save this article

Reliable optimal controls for SEIR models in epidemiology

Author

Listed:
  • Cacace, Simone
  • Oliviero, Alessio

Abstract

We present and compare two different optimal control approaches applied to SEIR models in epidemiology, which allow us to obtain some policies for controlling the spread of an epidemic. The first approach uses Dynamic Programming to characterise the value function of the problem as the solution of a partial differential equation, the Hamilton–Jacobi–Bellman equation, and derive the optimal policy in feedback form. The second is based on Pontryagin’s maximum principle and directly gives open-loop controls, via the solution of an optimality system of ordinary differential equations. This method, however, may not converge to the optimal solution. We propose a combination of the two methods in order to obtain high-quality and reliable solutions. Several simulations are presented and discussed, also checking first and second order necessary optimality conditions for the corresponding numerical solutions.

Suggested Citation

  • Cacace, Simone & Oliviero, Alessio, 2024. "Reliable optimal controls for SEIR models in epidemiology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 523-542.
  • Handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:523-542
    DOI: 10.1016/j.matcom.2024.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:523-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.