IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v223y2024icp183-194.html
   My bibliography  Save this article

Numerical solution of nonlinear Fredholm–Hammerstein integral equations with logarithmic kernel by spline quasi-interpolating projectors

Author

Listed:
  • Aimi, A.
  • Leoni, M.A.
  • Remogna, S.

Abstract

Nonlinear Fredholm–Hammerstein integral equations with logarithmic kernel are here taken into account and numerically solved by spline quasi-interpolating projectors based collocation and Kulkarni methods, both in their basic and iterated versions. Theoretical analysis of discretization error and convergence order is provided, together with numerical results validating the estimates obtained under the hypothesis of sufficiently smooth solutions. Finally, some results in case of less regular solutions show the robustness of the proposed approach even in a non smooth framework.

Suggested Citation

  • Aimi, A. & Leoni, M.A. & Remogna, S., 2024. "Numerical solution of nonlinear Fredholm–Hammerstein integral equations with logarithmic kernel by spline quasi-interpolating projectors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 183-194.
  • Handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:183-194
    DOI: 10.1016/j.matcom.2024.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Allouch, C. & Sablonnière, P. & Sbibih, D., 2011. "A modified Kulkarni's method based on a discrete spline quasi-interpolant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 1991-2000.
    3. Allouch, C. & Remogna, S. & Sbibih, D. & Tahrichi, M., 2021. "Superconvergent methods based on quasi-interpolating operators for fredholm integral equations of the second kind," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    4. Allouch, C. & Sbibih, D. & Tahrichi, M., 2018. "Numerical solutions of weakly singular Hammerstein integral equations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 118-128.
    5. Aimi, A. & Diligenti, M. & Sampoli, M.L. & Sestini, A., 2016. "Isogemetric analysis and symmetric Galerkin BEM: A 2D numerical study," Applied Mathematics and Computation, Elsevier, vol. 272(P1), pages 173-186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    2. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    4. Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
    5. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    6. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    7. Alessandra Aimi & Ariel Surya Boiardi, 2022. "IGA-Energetic BEM: An Effective Tool for the Numerical Solution of Wave Propagation Problems in Space-Time Domain," Mathematics, MDPI, vol. 10(3), pages 1-30, January.
    8. Kenji Ueda & Nobuo Yamashita, 2014. "A regularized Newton method without line search for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 321-351, October.
    9. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    10. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.
    11. Yuning Jiang & Dimitris Kouzoupis & Haoyu Yin & Moritz Diehl & Boris Houska, 2021. "Decentralized Optimization Over Tree Graphs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 384-407, May.
    12. Nesterov, Yurii, 2022. "Quartic Regularity," LIDAM Discussion Papers CORE 2022001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    14. Yuquan Chen & Yunkang Sun & Bing Wang, 2023. "Improving the Performance of Optimization Algorithms Using the Adaptive Fixed-Time Scheme and Reset Scheme," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    15. Yurii Nesterov, 2021. "Superfast Second-Order Methods for Unconstrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 1-30, October.
    16. Jaroslav Fowkes & Nicholas Gould & Chris Farmer, 2013. "A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions," Journal of Global Optimization, Springer, vol. 56(4), pages 1791-1815, August.
    17. Nicholas I. M. Gould & Tyrone Rees & Jennifer A. Scott, 2019. "Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 1-35, May.
    18. Kenji Ueda & Nobuo Yamashita, 2010. "On a Global Complexity Bound of the Levenberg-Marquardt Method," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 443-453, December.
    19. Anton Rodomanov & Yurii Nesterov, 2020. "Smoothness Parameter of Power of Euclidean Norm," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 303-326, May.
    20. Nadav Hallak & Marc Teboulle, 2020. "Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 480-503, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:183-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.