IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v218y2024icp357-382.html
   My bibliography  Save this article

The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

Author

Listed:
  • Scianna, Marco

Abstract

The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems.

Suggested Citation

  • Scianna, Marco, 2024. "The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 357-382.
  • Handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:357-382
    DOI: 10.1016/j.matcom.2023.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    2. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    3. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    4. Baniasadi, Pouya & Foumani, Mehdi & Smith-Miles, Kate & Ejov, Vladimir, 2020. "A transformation technique for the clustered generalized traveling salesman problem with applications to logistics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 444-457.
    5. Yasir Ahmad & Mohib Ullah & Rafiullah Khan & Bushra Shafi & Atif Khan & Mahdi Zareei & Abdallah Aldosary & Ehab Mahmoud Mohamed, 2020. "SiFSO: Fish Swarm Optimization-Based Technique for Efficient Community Detection in Complex Networks," Complexity, Hindawi, vol. 2020, pages 1-9, December.
    6. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    7. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    8. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    9. Hozefa M. Botee & Eric Bonabeau, 1998. "Evolving Ant Colony Optimization," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 1(02n03), pages 149-159.
    10. E. Bonabeau & M. Dorigo & G. Theraulaz, 2000. "Inspiration for optimization from social insect behaviour," Nature, Nature, vol. 406(6791), pages 39-42, July.
    11. Jon Jouis Bentley, 1992. "Fast Algorithms for Geometric Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 387-411, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bismark Singh & Lena Oberfichtner & Sergey Ivliev, 2023. "Heuristics for a cash-collection routing problem with a cluster-first route-second approach," Annals of Operations Research, Springer, vol. 322(1), pages 413-440, March.
    2. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    3. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    4. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    5. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    6. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2009. "Multiple phase neighborhood Search—GRASP based on Lagrangean relaxation, random backtracking Lin–Kernighan and path relinking for the TSP," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 134-156, February.
    7. Jean Bertrand Gauthier & Stefan Irnich, 2020. "Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle Routing Problems," Working Papers 2004, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.
    9. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    10. William Cook & André Rohe, 1999. "Computing Minimum-Weight Perfect Matchings," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 138-148, May.
    11. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    12. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    13. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    14. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    15. Ries, Jana & Beullens, Patrick & Salt, David, 2012. "Instance-specific multi-objective parameter tuning based on fuzzy logic," European Journal of Operational Research, Elsevier, vol. 218(2), pages 305-315.
    16. Mauro Birattari & Prasanna Balaprakash & Thomas Stützle & Marco Dorigo, 2008. "Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 644-658, November.
    17. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
    18. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2005. "A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 311-326, December.
    19. Beullens, Patrick & Muyldermans, Luc & Cattrysse, Dirk & Van Oudheusden, Dirk, 2003. "A guided local search heuristic for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 147(3), pages 629-643, June.
    20. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:357-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.