IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v484y2025ics0096300324004478.html
   My bibliography  Save this article

Local structure-preserving algorithms for the nonlinear Schrödinger equation with power law nonlinearity

Author

Listed:
  • Luo, Fangwen
  • Tang, Qiong
  • Huang, Yiting
  • Ding, Yanhui
  • Tang, Sijia

Abstract

This paper introduces three local structure-preserving algorithms for the one-dimensional nonlinear Schrödinger equation with power law nonlinearity, comprising two local energy-conserving algorithms and one local momentum-conserving algorithm. Additionally, we extend these local conservation algorithms to achieve global conservation under periodic boundary conditions. Theoretical analyses confirm the conservation properties of these algorithms. In numerical experiments, we validate the advantages of these algorithms in maintaining long-term energy or momentum conservation by comparing them with a multi-symplectic Preissman algorithm.

Suggested Citation

  • Luo, Fangwen & Tang, Qiong & Huang, Yiting & Ding, Yanhui & Tang, Sijia, 2025. "Local structure-preserving algorithms for the nonlinear Schrödinger equation with power law nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:apmaco:v:484:y:2025:i:c:s0096300324004478
    DOI: 10.1016/j.amc.2024.128986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barletti, L. & Brugnano, L. & Frasca Caccia, G. & Iavernaro, F., 2018. "Energy-conserving methods for the nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 3-18.
    2. Frasca-Caccia, Gianluca & Hydon, Peter E., 2021. "Numerical preservation of multiple local conservation laws," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Li, Haochen & Jiang, Chaolong & Lv, Zhongquan, 2018. "A Galerkin energy-preserving method for two dimensional nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 16-27.
    4. Langyang Huang & Zhaowei Tian & Yaoxiong Cai, 2020. "Compact Local Structure-Preserving Algorithms for the Nonlinear Schrödinger Equation with Wave Operator," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, January.
    5. Fu, Yayun & Hu, Dongdong & Wang, Yushun, 2021. "High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 238-255.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yifei & Peng, Gang & Zhang, Gengen & Zhang, Hong, 2023. "High-order Runge–Kutta structure-preserving methods for the coupled nonlinear Schrödinger–KdV equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 603-618.
    2. Frasca-Caccia, Gianluca & Hydon, Peter E., 2021. "Numerical preservation of multiple local conservation laws," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Sun, Zhengjie, 2022. "A conservative scheme for two-dimensional Schrödinger equation based on multiquadric trigonometric quasi-interpolation approach," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    4. Vyacheslav Trofimov & Maria Loginova, 2021. "Conservative Finite-Difference Schemes for Two Nonlinear Schrödinger Equations Describing Frequency Tripling in a Medium with Cubic Nonlinearity: Competition of Invariants," Mathematics, MDPI, vol. 9(21), pages 1-26, October.
    5. Amodio, Pierluigi & Brugnano, Luigi & Iavernaro, Felice, 2019. "A note on the continuous-stage Runge–Kutta(–Nyström) formulation of Hamiltonian Boundary Value Methods (HBVMs)," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    6. Yang, Yuna & Li, Hongwei & Guo, Xu, 2021. "A linearized energy-conservative scheme for two-dimensional nonlinear Schrödinger equation with wave operator," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    7. Vyacheslav Trofimov & Maria Loginova & Mikhail Fedotov & Daniil Tikhvinskii & Yongqiang Yang & Boyuan Zheng, 2022. "Conservative Finite-Difference Scheme for 1D Ginzburg–Landau Equation," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    8. Zhang, Fan & Sun, Hai-Wei & Sun, Tao, 2024. "Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    9. Luigi Brugnano & Gianluca Frasca-Caccia & Felice Iavernaro, 2019. "Line Integral Solution of Hamiltonian PDEs," Mathematics, MDPI, vol. 7(3), pages 1-28, March.
    10. Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Li, Haochen & Jiang, Chaolong & Lv, Zhongquan, 2018. "A Galerkin energy-preserving method for two dimensional nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 16-27.
    12. Auzinger, Winfried & Hofstätter, Harald & Koch, Othmar & Kropielnicka, Karolina & Singh, Pranav, 2019. "Time adaptive Zassenhaus splittings for the Schrödinger equation in the semiclassical regime," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:484:y:2025:i:c:s0096300324004478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.