IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v205y2023icp765-777.html
   My bibliography  Save this article

A neural network approach to solve geometric programs with joint probabilistic constraints

Author

Listed:
  • Tassouli, Siham
  • Lisser, Abdel

Abstract

We study a dynamical neural network approach to solve nonconvex geometric programs with joint probabilistic constraints (GPPC for short) with normally distributed coefficients and independent matrix row vectors. The main feature of our framework is to solve the biconvex deterministic equivalent problem of GPPC without the use of any convex approximation unlike the state-of-the-art solving methods. The second feature of our approach is to solve the dynamical system without the use of any iterative method but only by solving an ordinary differential equation system. We prove the stability together with the convergence of our neural network in the sense of Lyapunov. We also prove the equivalence between the optimal solution of the deterministic equivalent problem of GPPC and the solution of the dynamical system. We provide numerical experiments to show the performances of our approach compared to the state-of-art.

Suggested Citation

  • Tassouli, Siham & Lisser, Abdel, 2023. "A neural network approach to solve geometric programs with joint probabilistic constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 765-777.
  • Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:765-777
    DOI: 10.1016/j.matcom.2022.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    2. Gongxian Xu & Lei Wang, 2014. "An Improved Geometric Programming Approach for Optimization of Biochemical Systems," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, June.
    3. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021. "Estimation and inference in semiparametric quantile factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
    3. Zhiqing Meng & Min Jiang & Rui Shen & Leiyan Xu & Chuangyin Dang, 2021. "An objective penalty function method for biconvex programming," Journal of Global Optimization, Springer, vol. 81(3), pages 599-620, November.
    4. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    5. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    6. Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
    7. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    8. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    9. Ziniu Hu & Weiqing Liu & Jiang Bian & Xuanzhe Liu & Tie-Yan Liu, 2017. "Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction," Papers 1712.02136, arXiv.org, revised Feb 2019.
    10. Víctor Blanco, 2019. "Ordered p-median problems with neighbourhoods," Computational Optimization and Applications, Springer, vol. 73(2), pages 603-645, June.
    11. Yu, Pengfei & Gao, Ruotian & Xing, Wenxun, 2021. "Maximizing perturbation radii for robust convex quadratically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 293(1), pages 50-64.
    12. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    13. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    14. Tahereh Khodamoradi & Maziar Salahi, 2023. "Extended mean-conditional value-at-risk portfolio optimization with PADM and conditional scenario reduction technique," Computational Statistics, Springer, vol. 38(2), pages 1023-1040, June.
    15. Fitzpatrick, Dylan & Ni, Yun & Neill, Daniel B., 2021. "Support vector subset scan for spatial pattern detection," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    16. Qiwei Xie & Xi Chen & Lin Li & Kaifeng Rao & Luo Tao & Chao Ma, 2019. "Image Fusion Based on Kernel Estimation and Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 487-515, March.
    17. Mishra, Aditya & Dey, Dipak K. & Chen, Yong & Chen, Kun, 2021. "Generalized co-sparse factor regression," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. Shen, Yuelin, 2018. "Pricing contracts and planning stochastic resources in brand display advertising," Omega, Elsevier, vol. 81(C), pages 183-194.
    19. Blanco, Víctor & Fernández, Elena & Puerto, Justo, 2017. "Minimum Spanning Trees with neighborhoods: Mathematical programming formulations and solution methods," European Journal of Operational Research, Elsevier, vol. 262(3), pages 863-878.
    20. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2012. "Multi-resource allocation in stochastic project scheduling," Annals of Operations Research, Springer, vol. 193(1), pages 193-220, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:765-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.