IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v202y2022icp559-570.html
   My bibliography  Save this article

Preassigned-time bipartite synchronization of complex networks with quantized couplings and stochastic perturbations

Author

Listed:
  • Liang, Tao
  • Yang, Degang
  • Lei, Li
  • Zhang, Wanli
  • Pan, Ju

Abstract

By using the preassigned-time (PAT) control method, this paper considers bipartite synchronization of complex networks (CNs) with quantized couplings and stochastic perturbations. According to the characteristics of CNs and bipartite synchronization, a new controller is designed. In the controller, some control parameters are switched with the information of the error system, and the linear feedback term is not considered. Based on the properties of the Weiner process, a PAT criterion is given to guarantee the stochastic bipartite synchronization of CNs with a different Lyapunov function. In order to compare, a fixed-time control is designed and a synchronization criterion is also established. Moreover, experimental results effectively demonstrate the correctness of the theoretical analysis.

Suggested Citation

  • Liang, Tao & Yang, Degang & Lei, Li & Zhang, Wanli & Pan, Ju, 2022. "Preassigned-time bipartite synchronization of complex networks with quantized couplings and stochastic perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 559-570.
  • Handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:559-570
    DOI: 10.1016/j.matcom.2022.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542200324X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Qiang & Cao, Jinde & Liu, Fang, 2012. "Pinning synchronization of linearly coupled delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 86(C), pages 39-51.
    2. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Wang, Weiping & Jia, Xiao & Luo, Xiong & Kurths, Jürgen & Yuan, Manman, 2019. "Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 85-96.
    4. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Panqing & Ye, Renyu & Zhang, Hai & Stamova, Ivanka & Cao, Jinde, 2024. "Asymptotic stability and quantitative synchronization of fractional competitive neural networks with multiple restrictions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 338-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. T. Botmart & N. Yotha & P. Niamsup & W. Weera, 2017. "Hybrid Adaptive Pinning Control for Function Projective Synchronization of Delayed Neural Networks with Mixed Uncertain Couplings," Complexity, Hindawi, vol. 2017, pages 1-18, August.
    3. Lu Pang & Cheng Hu & Juan Yu & Haijun Jiang, 2022. "Fixed-Time Synchronization for Fuzzy-Based Impulsive Complex Networks," Mathematics, MDPI, vol. 10(9), pages 1-16, May.
    4. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Li, Xinna & Wu, Huaiqin & Cao, Jinde, 2023. "Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 647-668.
    6. Chen, Shenglong & Yang, Jikai & Li, Zhiming & Li, Hong-Li & Hu, Cheng, 2023. "New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming, 2024. "On fixed-time interlayer synchronization of two-layer multiweighted complex dynamic networks: An economic and practical non-chattering adaptive control approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    9. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    11. Enli Wu & Yao Wang & Yundong Li & Kelin Li & Fei Luo, 2023. "Fixed-Time Synchronization of Complex-Valued Coupled Networks with Hybrid Perturbations via Quantized Control," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    12. Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    13. Pharunyou Chanthorn & Grienggrai Rajchakit & Sriraman Ramalingam & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Dissipativity Analysis of Hopfield-Type Complex-Valued Neural Networks with Time-Varying Delays and Linear Fractional Uncertainties," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    14. Wang, Weiping & He, Chang & Wang, Zhen & Hramov, Alexander & Fan, Denggui & Yuan, Manman & Luo, Xiong & Kurths, Jürgen, 2021. "Dynamic analysis of synaptic loss and synaptic compensation in the process of associative memory ability decline in Alzheimer’s disease," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    15. Abudusaimaiti, Mairemunisa & Abdurahman, Abdujelil & Jiang, Haijun & Hu, Cheng, 2022. "Fixed/predefined-time synchronization of fuzzy neural networks with stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    17. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    18. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Iswarya, M. & Raja, R. & Cao, J. & Niezabitowski, M. & Alzabut, J. & Maharajan, C., 2022. "New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 440-461.
    20. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:559-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.