IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923009426.html
   My bibliography  Save this article

New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters

Author

Listed:
  • Chen, Shenglong
  • Yang, Jikai
  • Li, Zhiming
  • Li, Hong-Li
  • Hu, Cheng

Abstract

In this paper, a novel class of networks named fractional-order gene regulatory networks with time delay and uncertain parameters (FGRNTDUP) are formulated, and some new results are obtained for the dynamics of FGRNTDUP. Firstly, a general fractional-order differential equality is built to supply a new viewpoint about the study of finite-time stability, stabilization, and synchronization for many fractional systems. Secondly, based on contraction mapping principle, the existence and uniqueness of the equilibrium point are strictly proved for the FGRNTDUP. Meanwhile, by virtue of fractional Lyapunov method and inequality techniques, some sufficient conditions are derived to guarantee the global Mittag–Leffler stability of FGRNTDUP. Moreover, based on a newly developed inequality, some novel criteria are yielded to realize the finite-time synchronization of FGRNTDUP by designing a suitable adaptive controller. Finally, two numerical examples are provided to verify the effectiveness of the obtained results.

Suggested Citation

  • Chen, Shenglong & Yang, Jikai & Li, Zhiming & Li, Hong-Li & Hu, Cheng, 2023. "New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009426
    DOI: 10.1016/j.chaos.2023.114041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Bahrampour, Elham & Asemani, Mohammad Hassan & Dehghani, Maryam, 2023. "Robust global synchronization of delayed incommensurate fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Narayanan, G. & Syed Ali, M. & Karthikeyan, Rajagopal & Rajchakit, Grienggrai & Jirawattanapanit, Anuwat, 2022. "Novel adaptive strategies for synchronization control mechanism in nonlinear dynamic fuzzy modeling of fractional-order genetic regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Arjunan, Mani Mallika & Abdeljawad, Thabet & Anbalagan, Pratap, 2022. "Impulsive effects on fractional order time delayed gene regulatory networks: Asymptotic stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. Li, Hong-Li & Jiang, Yao-Lin & Wang, Zuolei & Zhang, Long & Teng, Zhidong, 2015. "Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 269-277.
    6. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Ayachi, Moez, 2022. "Dynamics of fuzzy genetic regulatory networks with leakage and mixed delays in doubly-measure pseudo-almost periodic environment," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. D. Baleanu & S. J. Sadati & R. Ghaderi & A. Ranjbar & T. Abdeljawad (Maraaba) & F. Jarad, 2010. "Razumikhin Stability Theorem for Fractional Systems with Delay," Abstract and Applied Analysis, Hindawi, vol. 2010, pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abulajiang Aili & Shenglong Chen & Sibao Zhang, 2024. "Event-Triggered Synchronization of Coupled Neural Networks with Reaction–Diffusion Terms," Mathematics, MDPI, vol. 12(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Juanping & Sheng, Yuhong & Li, Hong-Li & Hu, Cheng, 2023. "Stability and adaptive control-based synchronization of delayed uncertain fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Bahrampour, Elham & Asemani, Mohammad Hassan & Dehghani, Maryam, 2023. "Robust global synchronization of delayed incommensurate fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Lu Pang & Cheng Hu & Juan Yu & Haijun Jiang, 2022. "Fixed-Time Synchronization for Fuzzy-Based Impulsive Complex Networks," Mathematics, MDPI, vol. 10(9), pages 1-16, May.
    4. Li, Xinna & Wu, Huaiqin & Cao, Jinde, 2023. "Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 647-668.
    5. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2022. "Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method," Mathematics, MDPI, vol. 10(11), pages 1-15, May.
    6. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    7. Enli Wu & Yao Wang & Yundong Li & Kelin Li & Fei Luo, 2023. "Fixed-Time Synchronization of Complex-Valued Coupled Networks with Hybrid Perturbations via Quantized Control," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    8. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    9. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    10. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    11. Narayanan, G. & Syed Ali, M. & Karthikeyan, Rajagopal & Rajchakit, Grienggrai & Jirawattanapanit, Anuwat, 2022. "Novel adaptive strategies for synchronization control mechanism in nonlinear dynamic fuzzy modeling of fractional-order genetic regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Li, Hui & Kao, YongGui & Stamova, Ivanka & Shao, Chuntao, 2021. "Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    13. Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    15. Cai, Shuiming & Hou, Meiyuan, 2021. "Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Priyanka, K. Sri Raja & Soundararajan, G. & Kashkynbayev, Ardak & Nagamani, G., 2023. "Exponential H∞ synchronization and anti-synchronization of delayed discrete-time complex-valued neural networks with uncertainties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 301-321.
    17. Arockia Samy, Stephen & Anbalagan, Pratap, 2023. "Disturbance observer-based integral sliding-mode control design for leader-following consensus of multi-agent systems and its application to car-following model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Chen, Wei & Yu, Yongguang & Hai, Xudong & Ren, Guojian, 2022. "Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    19. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming, 2024. "On fixed-time interlayer synchronization of two-layer multiweighted complex dynamic networks: An economic and practical non-chattering adaptive control approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Liang, Tao & Yang, Degang & Lei, Li & Zhang, Wanli & Pan, Ju, 2022. "Preassigned-time bipartite synchronization of complex networks with quantized couplings and stochastic perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 559-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.