IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v200y2022icp97-107.html
   My bibliography  Save this article

Lie symmetries reduction and spectral methods on the fractional two-dimensional heat equation

Author

Listed:
  • Bakhshandeh-Chamazkoti, Rohollah
  • Alipour, Mohsen

Abstract

In this paper, the Lie symmetry analysis is proposed for a space–time convection–diffusion fractional differential equations with the Riemann–Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein’s operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.

Suggested Citation

  • Bakhshandeh-Chamazkoti, Rohollah & Alipour, Mohsen, 2022. "Lie symmetries reduction and spectral methods on the fractional two-dimensional heat equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 97-107.
  • Handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:97-107
    DOI: 10.1016/j.matcom.2022.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumitru Baleanu & Mohsen Alipour & Hossein Jafari, 2013. "The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati Differential Equations with the Riemann-Liouville Derivative," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, June.
    2. Hashemi, M.S., 2015. "Group analysis and exact solutions of the time fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 141-149.
    3. Lukashchuk, S.Yu. & Makunin, A.V., 2015. "Group classification of nonlinear time-fractional diffusion equation with a source term," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 335-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Sami Bataineh & Osman Rasit Isik & Moa’ath Oqielat & Ishak Hashim, 2021. "An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    2. Stanislav Yu. Lukashchuk, 2022. "On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    3. Hejazi, S. Reza & Saberi, Elaheh & Mohammadizadeh, Fatemeh, 2021. "Anisotropic non-linear time-fractional diffusion equation with a source term: Classification via Lie point symmetries, analytic solutions and numerical simulation," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    4. Biswas, Swapan & Ghosh, Uttam & Raut, Santanu, 2023. "Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Inc, Mustafa & Yusuf, Abdullahi & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 94-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:97-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.