IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v199y2022icp307-316.html
   My bibliography  Save this article

Practical exponential stability of stochastic delayed systems with G-Brownian motion via vector G-Lyapunov function

Author

Listed:
  • Zhu, Dejun

Abstract

This paper deals with practical stability problem for nonlinear stochastic delayed systems with G-Brownian motion (GSDSs). Practical stability can describe qualitative behavior and quantitative properties of systems in comparison with traditional Lyapunov stability theory. By employing stochastic analysis technique, Razumikhin-type theorem and vector G-Lyapunov function, new sufficient conditions for pth moment practical exponential stability of GSDSs are proposed. Finally, two examples are presented to verify the feasibility of theoretical results.

Suggested Citation

  • Zhu, Dejun, 2022. "Practical exponential stability of stochastic delayed systems with G-Brownian motion via vector G-Lyapunov function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 307-316.
  • Handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:307-316
    DOI: 10.1016/j.matcom.2022.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Shiguo & Jia, Baoguo, 2010. "Some criteria on pth moment stability of impulsive stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1085-1092, July.
    2. Cao, Wenping & Zhu, Quanxin, 2021. "Stability analysis of neutral stochastic delay differential equations via the vector Lyapunov function method," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    3. Xu, Liguang & Dai, Zhenlei & Hu, Hongxiao, 2019. "Almost sure and moment asymptotic boundedness of stochastic delay differential systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 157-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Cai & Pei Cheng, 2021. "Stability Analysis of Discrete-Time Stochastic Delay Systems with Impulses," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    2. Chu, Xiaoyan & Xu, Liguang & Hu, Hongxiao, 2020. "Exponential quasi-synchronization of conformable fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Lu, Boliang & Zhu, Quanxin, 2024. "Stability of switched neutral stochastic functional systems with different structures under high nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    4. Cheng, Pei & Deng, Feiqi, 2010. "Global exponential stability of impulsive stochastic functional differential systems," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1854-1862, December.
    5. He, Danhua & Xu, Liguang, 2022. "Boundedness analysis of stochastic delay differential equations with Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    6. Aadhithiyan, S. & Raja, R. & Zhu, Q. & Alzabut, J. & Niezabitowski, M. & Lim, C.P., 2021. "Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Kao, Yonggui & Zhu, Quanxin & Qi, Wenhai, 2015. "Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 795-804.
    8. Lijun Pan & Jinde Cao & Yong Ren, 2020. "Impulsive Stability of Stochastic Functional Differential Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
    9. Ruofeng Rao & Zhi Lin & Xiaoquan Ai & Jiarui Wu, 2022. "Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    10. Yao, Fengqi & Deng, Feiqi, 2012. "Exponential stability in terms of two measures of impulsive stochastic functional differential systems via comparison principle," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1151-1159.
    11. Thoiyab, N. Mohamed & Muruganantham, P. & Zhu, Quanxin & Gunasekaran, Nallappan, 2021. "Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:307-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.