IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i6p1151-1159.html
   My bibliography  Save this article

Exponential stability in terms of two measures of impulsive stochastic functional differential systems via comparison principle

Author

Listed:
  • Yao, Fengqi
  • Deng, Feiqi

Abstract

In this paper, based on like-Lyapunov functions and comparison principles, several criteria on the exponential stability in terms of two measures of impulsive stochastic functional differential systems with infinite or finite delays are obtained. The results improve and complement those in earlier publications. Two illustrative examples are also discussed to show the effectiveness and generality of our theorems.

Suggested Citation

  • Yao, Fengqi & Deng, Feiqi, 2012. "Exponential stability in terms of two measures of impulsive stochastic functional differential systems via comparison principle," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1151-1159.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:6:p:1151-1159
    DOI: 10.1016/j.spl.2012.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Shiguo & Jia, Baoguo, 2010. "Some criteria on pth moment stability of impulsive stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1085-1092, July.
    2. Sakthivel, R. & Luo, J., 2009. "Asymptotic stability of nonlinear impulsive stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1219-1223, May.
    3. Cheng, Pei & Deng, Feiqi, 2010. "Global exponential stability of impulsive stochastic functional differential systems," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1854-1862, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Tengda & Lin, Ping & Zhu, Quanxin & Yao, Qi, 2021. "Instability of impulsive stochastic systems with application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 402(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Yonggui & Zhu, Quanxin & Qi, Wenhai, 2015. "Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 795-804.
    2. Cheng, Pei & Deng, Feiqi, 2010. "Global exponential stability of impulsive stochastic functional differential systems," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1854-1862, December.
    3. Lijun Pan & Jinde Cao & Yong Ren, 2020. "Impulsive Stability of Stochastic Functional Differential Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
    4. Ting Cai & Pei Cheng, 2021. "Stability Analysis of Discrete-Time Stochastic Delay Systems with Impulses," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    5. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Alka Chadha & Dwijendra N. Pandey, 2018. "Approximate Controllability of a Neutral Stochastic Fractional Integro-Differential Inclusion with Nonlocal Conditions," Journal of Theoretical Probability, Springer, vol. 31(2), pages 705-740, June.
    7. Peng, Shiguo & Jia, Baoguo, 2010. "Some criteria on pth moment stability of impulsive stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1085-1092, July.
    8. Long, Shujun & Teng, Lingying & Xu, Daoyi, 2012. "Global attracting set and stability of stochastic neutral partial functional differential equations with impulses," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1699-1709.
    9. Cao, Wenping & Zhu, Quanxin, 2022. "Stability of stochastic nonlinear delay systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Liu, Shuning & Lv, Guangying, 2024. "Almost sure polynomial stability and stabilization of stochastic differential systems with impulsive effects," Statistics & Probability Letters, Elsevier, vol. 206(C).
    11. Tamilalagan, P. & Balasubramaniam, P., 2017. "Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 299-307.
    12. Chen, Guiling & van Gaans, Onno & Lunel, Sjoerd Verduyn, 2018. "Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 7-18.
    13. Zhu, Dejun, 2022. "Practical exponential stability of stochastic delayed systems with G-Brownian motion via vector G-Lyapunov function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 307-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:6:p:1151-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.