IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v192y2022icp501-513.html
   My bibliography  Save this article

Chebyshev spectral method for solving fuzzy fractional Fredholm–Volterra integro-differential equation

Author

Listed:
  • Kumar, Sachin
  • Nieto, Juan J.
  • Ahmad, Bashir

Abstract

The fuzzy integral equation is used to model many physical phenomena which arise in many fields like chemistry, physics, and biology, etc. In this article, we emphasize on mathematical modeling of the fuzzy fractional Fredholm–Volterra integral equation. The numerical solution of the fuzzy fractional Fredholm–Volterra equation is determined in which model contains fuzzy coefficients and fuzzy initial condition. First, an operational matrix of Chebyshev polynomial of Caputo type fractional fuzzy derivative is derived in fuzzy environment. The integral term is approximated by the Chebyshev spectral method and the differential term is approximated by the operational matrix. This method converted the given fuzzy fractional integral equation into algebraic equations which are fuzzy in nature. The desired numerical solution is to find out by solving these algebraic equations. The different particular cases of our model have been solved which depict the feasibility of our method. The error tables show the accuracy of the method. We also can see the accuracy of our method by 3D figures of exact and obtained numerical solutions. Hence, our method is suitable to deal with the fuzzy fractional Fredholm–Volterra equation.

Suggested Citation

  • Kumar, Sachin & Nieto, Juan J. & Ahmad, Bashir, 2022. "Chebyshev spectral method for solving fuzzy fractional Fredholm–Volterra integro-differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 501-513.
  • Handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:501-513
    DOI: 10.1016/j.matcom.2021.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. A. H. Bhrawy & D. Baleanu & L. M. Assas & J. A. Tenreiro Machado, 2013. "On a Generalized Laguerre Operational Matrix of Fractional Integration," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Longbin & Wang, Pengde, 2022. "Error estimates of piecewise Hermite collocation method for highly oscillatory Volterra integral equation with Bessel kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 137-150.
    2. Heydari, M.H. & Razzaghi, M., 2023. "Piecewise fractional Chebyshev cardinal functions: Application for time fractional Ginzburg–Landau equation with a non-smooth solution," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    2. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    3. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2021. "Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    4. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Bambe Moutsinga, Claude Rodrigue & Pindza, Edson & Maré, Eben, 2021. "Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Eghlimi, Hadi & Asgari, Mohammad Sadegh, 2023. "A study of the time-fractional heat equation under the generalized Hukuhara conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Kumar, S. & Das, Subir & Ong, S.H., 2021. "Analysis of tumor cells in the absence and presence of chemotherapeutic treatment: The case of Caputo-Fabrizio time fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1-14.
    8. Guimarães, O. & Labecca, W. & Piqueira, José R.C., 2022. "Solving 2nd order BVPs in planar irregular domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 1-22.
    9. Gao, Wei & Baskonus, Haci Mehmet, 2022. "Deeper investigation of modified epidemiological computer virus model containing the Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:501-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.