IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/569286.html
   My bibliography  Save this article

On a Generalized Laguerre Operational Matrix of Fractional Integration

Author

Listed:
  • A. H. Bhrawy
  • D. Baleanu
  • L. M. Assas
  • J. A. Tenreiro Machado

Abstract

A new operational matrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived. The fractional integration is described in the Riemann-Liouville sense. This operational matrix is applied together with generalized Laguerre tau method for solving general linear multiterm fractional differential equations (FDEs). The method has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposed method is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.

Suggested Citation

  • A. H. Bhrawy & D. Baleanu & L. M. Assas & J. A. Tenreiro Machado, 2013. "On a Generalized Laguerre Operational Matrix of Fractional Integration," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, March.
  • Handle: RePEc:hin:jnlmpe:569286
    DOI: 10.1155/2013/569286
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/569286.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/569286.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/569286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guimarães, O. & Labecca, W. & Piqueira, José R.C., 2022. "Solving 2nd order BVPs in planar irregular domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 1-22.
    2. Kumar, S. & Das, Subir & Ong, S.H., 2021. "Analysis of tumor cells in the absence and presence of chemotherapeutic treatment: The case of Caputo-Fabrizio time fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1-14.
    3. Bambe Moutsinga, Claude Rodrigue & Pindza, Edson & Maré, Eben, 2021. "Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Kumar, Sachin & Nieto, Juan J. & Ahmad, Bashir, 2022. "Chebyshev spectral method for solving fuzzy fractional Fredholm–Volterra integro-differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 501-513.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:569286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.