IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v111y2018icp146-156.html
   My bibliography  Save this article

Effect of delay on globally stable prey–predator system

Author

Listed:
  • Juneja, Nishant
  • Agnihotri, Kulbhushan
  • Kaur, Harpreet

Abstract

The present paper deals with an eco-epidemiological prey–predator model with delay. It is assumed that infection floats in predator species only. Both the susceptible and infected predator species are subjected to harvesting at different harvesting rates. Differential predation rates for susceptible and infected predators are considered. It is shown that the time delay can even destabilize the otherwise globally stable non-zero equilibrium state. It is observed that coexistence of all the three species is possible through periodic solutions due to Hopf bifurcation. With the help of normal form theory and central manifold arguments, stability of bifurcating periodic orbits is determined. Numerical simulations have been carried out to justify the theoretical results obtained.

Suggested Citation

  • Juneja, Nishant & Agnihotri, Kulbhushan & Kaur, Harpreet, 2018. "Effect of delay on globally stable prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 146-156.
  • Handle: RePEc:eee:chsofr:v:111:y:2018:i:c:p:146-156
    DOI: 10.1016/j.chaos.2018.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791830153X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Hengguo & Zhong, Shouming & Ye, Mao, 2009. "Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 619-632.
    2. Gao, Xubin & Pan, Qiuhui & He, Mingfeng & Kang, Yibin, 2013. "A predator–prey model with diseases in both prey and predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5898-5906.
    3. Zhao, Min & Wang, Xitao & Yu, Hengguo & Zhu, Jun, 2012. "Dynamics of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1432-1444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barman, Binandita & Ghosh, Bapan, 2019. "Explicit impacts of harvesting in delayed predator-prey models," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 213-228.
    2. Agnihotri, Kulbhushan & Kaur, Harpreet, 2021. "Optimal control of harvesting effort in a phytoplankton–zooplankton model with infected zooplankton under the influence of toxicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 946-964.
    3. Agnihotri, Kulbhushan & Kaur, Harpreet, 2019. "The dynamics of viral infection in toxin producing phytoplankton and zooplankton system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 122-133.
    4. Juneja, Nishant & Agnihotri, Kulbhushan, 2018. "Conservation of a predator species in SIS prey-predator system using optimal taxation policy," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 86-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    2. Kim, Hye Kyung & Baek, Hunki, 2013. "The dynamical complexity of a predator–prey system with Hassell–Varley functional response and impulsive effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 1-14.
    3. Jana, Soovoojeet & Chakraborty, Milon & Chakraborty, Kunal & Kar, T.K., 2012. "Global stability and bifurcation of time delayed prey–predator system incorporating prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 85(C), pages 57-77.
    4. Tiancai Liao & Hengguo Yu & Chuanjun Dai & Min Zhao, 2019. "Impact of Cell Size Effect on Nutrient-Phytoplankton Dynamics," Complexity, Hindawi, vol. 2019, pages 1-23, November.
    5. Zhao, Min & Wang, Xitao & Yu, Hengguo & Zhu, Jun, 2012. "Dynamics of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1432-1444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:111:y:2018:i:c:p:146-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.