IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v183y2021icp5-19.html
   My bibliography  Save this article

Integrated electro-thermal model for pouch lithium ion batteries

Author

Listed:
  • Barcellona, Simone
  • Piegari, Luigi

Abstract

Lithium ion batteries are being used in an increasing number of applications. However, one of their major weaknesses is their sensitivity to temperature. Indeed, their safety and aging strongly depend on their temperature. In order to control cell temperatures, each cell in a battery pack is usually equipped with a thermal sensor. This paper proposes an integrated electro-thermal model that is capable of predicting the thermal behavior of a battery cell based only on its current and ambient conditions. The proposed model was tuned and validated by means of experimental results. The obtained precision is sufficient to predict the temperature of a battery with an acceptable accuracy considering the low complexity of the proposed model.

Suggested Citation

  • Barcellona, Simone & Piegari, Luigi, 2021. "Integrated electro-thermal model for pouch lithium ion batteries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 5-19.
  • Handle: RePEc:eee:matcom:v:183:y:2021:i:c:p:5-19
    DOI: 10.1016/j.matcom.2020.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420300847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simone Barcellona & Luigi Piegari, 2017. "Lithium Ion Battery Models and Parameter Identification Techniques," Energies, MDPI, vol. 10(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhiliang & Wang, Huaixing & Zou, Wei & Zhang, Rongchuan & Wang, Yuhan & Chen, Jie & Wu, Shengben, 2024. "An online evaluation model for mechanical/thermal states in prismatic lithium-ion batteries under fast charging/discharging," Energy, Elsevier, vol. 302(C).
    2. Huang, Zhiliang & Wang, Huaixing & Yang, Tongguang & Chen, Zeye & Li, Hangyang & Chen, Jie & Wu, Shengben, 2023. "An efficient multi-state evaluation approach for lithium-ion pouch cells under dynamic conditions in pressure/current/temperature," Applied Energy, Elsevier, vol. 340(C).
    3. Xie, Jiahang & Yang, Rufan & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2023. "PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system," Applied Energy, Elsevier, vol. 331(C).
    4. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    2. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    4. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    5. Nicola Campagna & Vincenzo Castiglia & Rosario Miceli & Rosa Anna Mastromauro & Ciro Spataro & Marco Trapanese & Fabio Viola, 2020. "Battery Models for Battery Powered Applications: A Comparative Study," Energies, MDPI, vol. 13(16), pages 1-26, August.
    6. Hamed Jafari Kaleybar & Morris Brenna & Huan Li & Dario Zaninelli, 2022. "Fuel Cell Hybrid Locomotive with Modified Fuzzy Logic Based Energy Management System," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    7. Yoon Koo Lee, 2019. "The Effect of Active Material, Conductive Additives, and Binder in a Cathode Composite Electrode on Battery Performance," Energies, MDPI, vol. 12(4), pages 1-19, February.
    8. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Mazin Mohammed Mogadem & Yan Li, 2021. "Memristive Equivalent Circuit Model for Battery," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    10. Kafetzis, A. & Ziogou, C. & Panopoulos, K.D. & Papadopoulou, S. & Seferlis, P. & Voutetakis, S., 2020. "Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Nissim Amar & Aaron Shmaryahu & Michael Coletti & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application," Energies, MDPI, vol. 14(15), pages 1-19, August.
    12. Ahmed Fathy & Dalia Yousri & Abdullah G. Alharbi & Mohammad Ali Abdelkareem, 2023. "A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    13. Ingela Tietze & Lukas Lazar & Heidi Hottenroth & Steffen Lewerenz, 2020. "LAEND: A Model for Multi-Objective Investment Optimisation of Residential Quarters Considering Costs and Environmental Impacts," Energies, MDPI, vol. 13(3), pages 1-22, February.
    14. Majid Astaneh & Jelena Andric & Lennart Löfdahl & Dario Maggiolo & Peter Stopp & Mazyar Moghaddam & Michel Chapuis & Henrik Ström, 2020. "Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications," Energies, MDPI, vol. 13(14), pages 1-27, July.
    15. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:183:y:2021:i:c:p:5-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.