IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v183y2021icp20-33.html
   My bibliography  Save this article

Direct determination of a single battery internal resistances distribution using a heterogeneous model

Author

Listed:
  • Juston, Maxime
  • Damay, Nicolas
  • Forgez, Christophe
  • Friedrich, Guy
  • Vivier, Stephane
  • Mergo Mbeya, Karrick
  • Vulturescu, Bogdan

Abstract

Lithium-ion batteries are getting larger due to the expansion of transportation and mass storage markets and they can now contain up to thousands of cells. However, a sole damaged cell can significantly impact the whole battery pack efficiency. Thus, the diagnosis of a single cell remains critical for those systems. Many methods exist in which the cell is considered homogeneous. We recently developed a heterogeneous equivalent circuit model that considers an internal resistance distribution to better represent a real single cell behaviour. This internal resistance distribution (IRD) may bring valuable information about a single cell internal quality, but only if it is determined with a sufficient accuracy. In this paper, we propose an algorithm that allows a responsive determination of the IRD. The results are compared to previous determination methods. This IRD, which is determined thanks to the preliminary construction of a homogeneous model and a single discharge, is also valid for other operating conditions. The determination of a cell IRD can be used as a non-invasive diagnosis tool to track the internal degradations of a cell. The IRD of two different cell, one aged and one new are then compared, the IRD of the aged one being on average larger. This proves the relevance of the determination method and its use to get an insight into a cell. Differences in shape between the aged and the new cell IRD are discussed, as well as criteria that seems interesting. Although this work is developed for a single cell, its initial goal is to be used to detect a damaged cell inside a battery pack and may thus be applied to several cells connected in parallel.

Suggested Citation

  • Juston, Maxime & Damay, Nicolas & Forgez, Christophe & Friedrich, Guy & Vivier, Stephane & Mergo Mbeya, Karrick & Vulturescu, Bogdan, 2021. "Direct determination of a single battery internal resistances distribution using a heterogeneous model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 20-33.
  • Handle: RePEc:eee:matcom:v:183:y:2021:i:c:p:20-33
    DOI: 10.1016/j.matcom.2020.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420300227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berrueta, Alberto & Urtasun, Andoni & Ursúa, Alfredo & Sanchis, Pablo, 2018. "A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model," Energy, Elsevier, vol. 144(C), pages 286-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    2. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    3. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    4. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    5. Sarah O’Connell & Marcus Martin Keane, 2021. "Development of a Framework for Activation of Aggregator Led Flexibility," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.
    7. San Martín, Idoia & Berrueta, Alberto & Sanchis, Pablo & Ursúa, Alfredo, 2018. "Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system," Energy, Elsevier, vol. 153(C), pages 870-881.
    8. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    9. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    10. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    11. Torregrosa, Antonio José & Broatch, Alberto & Olmeda, Pablo & Agizza, Luca, 2023. "A generalized equivalent circuit model for lithium-iron phosphate batteries," Energy, Elsevier, vol. 284(C).
    12. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    13. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    14. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    15. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:183:y:2021:i:c:p:20-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.