IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v166y2019icp283-297.html
   My bibliography  Save this article

Solving traffic queues at controlled-signalized intersections in continuous-time Markov games

Author

Listed:
  • Castillo González, Rodrigo
  • Clempner, Julio B.
  • Poznyak, Alexander S.

Abstract

The traffic signal control plays a fundamental role to improve the efficiency and efficacy of traffic flows in traffic networks. This paper is the first work in which we consider a mathematically rigorous study of the continuous-time, discrete state, multi-traffic signal control problem using a non-cooperative game theory approach. The solution of the problem is circumscribed to an ergodic, controllable, discrete state, continuous-time Markov game computed under the expected average cost criterion. This paper provides several main contributions. First, we present a general continuous-time queue model, which is employed as the fundamental scheme of a computationally tractable game theory approach for the signal control continuous-time Markov game. This model is transformed into a discrete state Poisson process where the vehicles leave the queue in the order they arrive. Second, in this problem, each signal controller (player) aims at finding green time that minimizes its signal and queuing delay. Then, a conflict appears when each signal controller tries to minimize its queue. We study the problem of computing a Nash equilibrium for this game. Our third contribution employs a proximal/gradient method for computing the Nash equilibrium point of the game. By introducing new restrictions over the signal controller and adding a restriction for continuous-time Markov chains, we obtain the set of average optimal policies, which is one of the main results of this paper. Hence, our final contribution shows, in simulation, the usefulness of the proposed method with an application example.

Suggested Citation

  • Castillo González, Rodrigo & Clempner, Julio B. & Poznyak, Alexander S., 2019. "Solving traffic queues at controlled-signalized intersections in continuous-time Markov games," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 283-297.
  • Handle: RePEc:eee:matcom:v:166:y:2019:i:c:p:283-297
    DOI: 10.1016/j.matcom.2019.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419302009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    2. D’Acierno, Luca & Gallo, Mariano & Montella, Bruno, 2012. "An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 459-469.
    3. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    4. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    5. M. J. Smith & T. van Vuren, 1993. "Traffic Equilibrium with Responsive Traffic Control," Transportation Science, INFORMS, vol. 27(2), pages 118-132, May.
    6. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    7. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    8. D. Helbing & A. Mazloumian, 2009. "Operation regimes and slower-is-faster effect in the controlof traffic intersections," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 257-274, July.
    9. Caroline Fisk & Sang Nguyen, 1982. "Solution Algorithms for Network Equilibrium Models with Asymmetric User Costs," Transportation Science, INFORMS, vol. 16(3), pages 361-381, August.
    10. Ziyou, Gao & Yifan, Song, 2002. "A reserve capacity model of optimal signal control with user-equilibrium route choice," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 313-323, May.
    11. Florian, Michael & Spiess, Heinz, 1982. "The convergence of diagonalization algorithms for asymmetric network equilibrium problems," Transportation Research Part B: Methodological, Elsevier, vol. 16(6), pages 477-483, December.
    12. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    13. Meneguzzer, Claudio, 1995. "An equilibrium route choice model with explicit treatment of the effect of intersections," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 329-356, October.
    14. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    15. Heydecker, B. G., 1996. "A decomposition approach for signal optimisation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 99-114, April.
    16. Suh-Wen Chiou, 1999. "Optimization of Area Traffic Control for Equilibrium Network Flows," Transportation Science, INFORMS, vol. 33(3), pages 279-289, August.
    17. Kuwahara, Masao & Akamatsu, Takashi, 1997. "Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 1-10, February.
    18. Stella Dafermos, 1982. "Relaxation Algorithms for the General Asymmetric Traffic Equilibrium Problem," Transportation Science, INFORMS, vol. 16(2), pages 231-240, May.
    19. Daganzo, Carlos F., 1995. "Properties of link travel time functions under dynamic loads," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 95-98, April.
    20. Smith, M. J., 1979. "Traffic control and route-choice; a simple example," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 289-294, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Sutong & Kang, Leilei & Huang, Hao & Liu, Lan, 2023. "A perimeter control model of urban road network based on cooperative-noncooperative two-stage game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Yang, Qiaoli & Fu, Xue, 2024. "An extended queueing model for vehicles at signalized intersections considering the platoon correlated arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    2. Meneguzzer, Claudio, 1995. "An equilibrium route choice model with explicit treatment of the effect of intersections," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 329-356, October.
    3. D’Acierno, Luca & Gallo, Mariano & Montella, Bruno, 2012. "An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 459-469.
    4. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    5. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
    6. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    7. Les Foulds & Daniel Duarte & Hugo Nascimento & Humberto Longo & Bryon Hall, 2014. "Turning restriction design in traffic networks with a budget constraint," Journal of Global Optimization, Springer, vol. 60(2), pages 351-371, October.
    8. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    9. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    10. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    11. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    12. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    13. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    14. Guo, Jianhua & Kong, Ye & Li, Zongzhi & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "A model and genetic algorithm for area-wide intersection signal optimization under user equilibrium traffic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 92-104.
    15. Evers, Ruth & Proost, Stef, 2015. "Optimizing intersections," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 100-119.
    16. Lee, Seunghyeon & Wong, S.C., 2017. "Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 1-20.
    17. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    18. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    19. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
    20. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:166:y:2019:i:c:p:283-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.