IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v159y2019icp39-56.html
   My bibliography  Save this article

Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays

Author

Listed:
  • Tang, Qian
  • Jian, Jigui

Abstract

This paper focuses on the exponential convergence of impulsive inertial complex-valued neural networks with time-varying delays. The system can be expressed as a first order differential equation by selecting a proper variable substitution. By constructing proper Lyapunov–Krasovskii functionals and using inequality techniques, some delay-dependent sufficient conditions in linear matrix inequality form are proposed to ascertain the global exponential convergence of the addressed neural networks with two classes of complex-valued activation functions. The framework of the exponential convergence ball domain in which all trajectories converge is also given. Meanwhile, the obtained results here do not meet that the derivatives of the time-varying delays are less than one and there are also no limit to the strength of impulses. The methods here can also be applied to deal with multistable and monostable neural networks because of making no hypotheses on the amount of the equilibrium points. Finally, two examples are given to demonstrate the validity of the theoretical results.

Suggested Citation

  • Tang, Qian & Jian, Jigui, 2019. "Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 39-56.
  • Handle: RePEc:eee:matcom:v:159:y:2019:i:c:p:39-56
    DOI: 10.1016/j.matcom.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418302805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaofeng & Zhao, Zhenjiang & Song, Qiankun & Hu, Jin, 2017. "Multistability of complex-valued neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 18-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    2. Iswarya, M. & Raja, R. & Cao, J. & Niezabitowski, M. & Alzabut, J. & Maharajan, C., 2022. "New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 440-461.
    3. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    4. Zhao, Rui & Wang, Baoxian & Jian, Jigui, 2022. "Global μ-stabilization of quaternion-valued inertial BAM neural networks with time-varying delays via time-delayed impulsive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 223-245.
    5. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Bao, Gang & Zeng, Zhigang, 2021. "Prescribed convergence analysis of recurrent neural networks with parameter variations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 858-870.
    8. Wei, Xiaofeng & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    9. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Lin, Dongyuan & Chen, Xiaofeng & Yu, Guoping & Li, Zhongshan & Xia, Yannan, 2021. "Global exponential synchronization via nonlinear feedback control for delayed inertial memristor-based quaternion-valued neural networks with impulses," Applied Mathematics and Computation, Elsevier, vol. 401(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    3. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    4. Zhang, Yan & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2023. "Multistability of almost periodic solution for Clifford-valued Cohen–Grossberg neural networks with mixed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    6. Wang, Pengfei & Zou, Wenqing & Su, Huan, 2019. "Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 338-354.
    7. Yu, Siyi & Li, Hua & Chen, Xiaofeng & Lin, Dongyuan, 2023. "Multistability analysis of quaternion-valued neural networks with cosine activation functions," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    8. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Xiaohui Xu & Jibin Yang & Yanhai Xu, 2019. "Mean Square Exponential Stability of Stochastic Complex-Valued Neural Networks with Mixed Delays," Complexity, Hindawi, vol. 2019, pages 1-20, June.
    10. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    11. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    12. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    13. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Sriraman, R. & Cao, Yang & Samidurai, R., 2020. "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 103-118.
    15. Sun, Li & Zhu, Haitao & Ding, Yanhui, 2020. "Impulsive control for persistence and periodicity of logistic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 294-305.
    16. Xiaohui Xu & Huanbin Xue & Yiqiang Peng & Quan Xu & Jibin Yang, 2018. "Robust Exponential Stability of Switched Complex-Valued Neural Networks with Interval Parameter Uncertainties and Impulses," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    17. Jin-dong Li & Nan-jing Huang, 2018. "Asymptotical Stability for a Class of Complex-Valued Projective Neural Network," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 261-270, April.
    18. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    19. Nie, Xiaobing & Liang, Jinling & Cao, Jinde, 2019. "Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 449-468.
    20. Tan, Manchun & Liu, Yunfeng & Xu, Desheng, 2019. "Multistability analysis of delayed quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 229-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:159:y:2019:i:c:p:39-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.