IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v401y2021ics0096300321001417.html
   My bibliography  Save this article

Global exponential synchronization via nonlinear feedback control for delayed inertial memristor-based quaternion-valued neural networks with impulses

Author

Listed:
  • Lin, Dongyuan
  • Chen, Xiaofeng
  • Yu, Guoping
  • Li, Zhongshan
  • Xia, Yannan

Abstract

The issue of global exponential synchronization is addressed for delayed impulsive and time-varying delayed inertial memristor-based quaternion-valued neural networks (IMQVNNs). First, the concept of the Filippov solution for IMQVNNs is introduced by applying differential inclusion theory. Then, a nonlinear feedback controller is designed in the skew field of quaternions to ensure the realization of global exponential synchronization for IMQVNNs. According to this controller, the global exponential synchronization criteria are established based on the Lyapunov stability theory. Moreover, a corollary for the real-valued system is given to compare with the existing conclusions. Finally, two examples are presented to show the validity of the results.

Suggested Citation

  • Lin, Dongyuan & Chen, Xiaofeng & Yu, Guoping & Li, Zhongshan & Xia, Yannan, 2021. "Global exponential synchronization via nonlinear feedback control for delayed inertial memristor-based quaternion-valued neural networks with impulses," Applied Mathematics and Computation, Elsevier, vol. 401(C).
  • Handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001417
    DOI: 10.1016/j.amc.2021.126093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Tour & Tao He, 2008. "The fourth element," Nature, Nature, vol. 453(7191), pages 42-43, May.
    2. Chen, Siya & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2020. "Almost sure exponential synchronization of drive-response stochastic memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    3. Z. Tan & M. K. Ali, 2001. "Associative Memory Using Synchronization In A Chaotic Neural Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 19-29.
    4. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    5. YaJun Li & Quanxin Zhu, 2019. "Stability Analysis for Discrete-Time Stochastic Fuzzy Neural Networks with Mixed Delays," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, February.
    6. Huang, Yanli & Hou, Jie & Yang, Erfu, 2020. "Passivity and Synchronization of Coupled Reaction-Diffusion Complex-Valued Memristive Neural Networks," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    7. Tang, Qian & Jian, Jigui, 2019. "Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 39-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    2. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    3. Xiong, Kailong & Hu, Cheng & Yu, Juan, 2023. "Direct approach-based synchronization of fully quaternion-valued neural networks with inertial term and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Zhao, Ningning & Qiao, Yuanhua, 2024. "Stability analysis of Clifford-valued memristor-based neural networks with impulsive disturbances and its application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    6. Wang, Shaofu, 2023. "A novel memristive chaotic system and its adaptive sliding mode synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    2. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    3. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    5. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Guo, Runan & Zhang, Ziye & Liu, Xiaoping & Lin, Chong, 2017. "Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 100-117.
    7. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    10. Otkel, Madina & Ganesan, Soundararajan & Rajan, Rakkiyappan & Kashkynbayev, Ardak, 2024. "Finite-time/fixed-time synchronization of memristive shunting inhibitory cellular neural networks via sliding mode control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 252-263.
    11. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    12. Bao, Yuangui & Zhang, Yijun & Zhang, Baoyong, 2021. "Fixed-time synchronization of coupled memristive neural networks via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    13. Li, Qiang & Liang, Jinling, 2022. "Non-fragile asynchronous state estimation for Markovian switching CVNs with partly accessible mode detection: The discrete-time case," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    14. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.
    15. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    16. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    20. Mathiyalagan, K. & Park, Ju H. & Sakthivel, R., 2015. "Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 967-979.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.