IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v158y2019icp79-90.html
   My bibliography  Save this article

Use of reluctance network modelling and software component to study the influence of electrical machine pole number on hybrid electric vehicle global optimization

Author

Listed:
  • Guyadec, M. Le
  • Gerbaud, L.
  • Vinot, E.
  • Reinbold, V.
  • Dumont, C.

Abstract

In the paper, the global optimization of hybrid electric vehicle (HEV) components and control is performed using genetic algorithm and dynamic programming. Reluctance network modelling (RNM) is used to describe the behaviour of the electrical machine (EM). The pole number is considered as a design variable in the EM model. A software component is built from this model and is used in Matlab for a sizing by optimization. The influence of the EM pole number on the system optimization is analysed. Contrary to the low differences observed on the energy efficiency of the vehicle, the machine shape is highly impacted.

Suggested Citation

  • Guyadec, M. Le & Gerbaud, L. & Vinot, E. & Reinbold, V. & Dumont, C., 2019. "Use of reluctance network modelling and software component to study the influence of electrical machine pole number on hybrid electric vehicle global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 79-90.
  • Handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:79-90
    DOI: 10.1016/j.matcom.2018.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Zou & Fengchun Sun & Xiaosong Hu & Lino Guzzella & Huei Peng, 2012. "Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle," Energies, MDPI, vol. 5(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    3. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    4. Nissim Amar & Aaron Shmaryahu & Michael Coletti & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application," Energies, MDPI, vol. 14(15), pages 1-19, August.
    5. Zhenpo Wang & Changhui Qu & Lei Zhang & Jin Zhang & Wen Yu, 2018. "Integrated Sizing and Energy Management for Four-Wheel-Independently-Actuated Electric Vehicles Considering Realistic Constructed Driving Cycles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    6. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    7. Yu-Huei Cheng & Ching-Ming Lai, 2017. "Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm," Energies, MDPI, vol. 10(3), pages 1-21, March.
    8. Zou, Yuan & Liu, Teng & Liu, Dexing & Sun, Fengchun, 2016. "Reinforcement learning-based real-time energy management for a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 171(C), pages 372-382.
    9. Wei, Shouyang & Zou, Yuan & Sun, Fengchun & Christopher, Onder, 2017. "A pseudospectral method for solving optimal control problem of a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 194(C), pages 588-595.
    10. Yalian Yang & Xiaosong Hu & Datong Qing & Fangyuan Chen, 2013. "Arrhenius Equation-Based Cell-Health Assessment: Application to Thermal Energy Management Design of a HEV NiMH Battery Pack," Energies, MDPI, vol. 6(5), pages 1-17, May.
    11. Jianjun Hu & Lingling Zheng & Meixia Jia & Yi Zhang & Tao Pang, 2018. "Optimization and Model Validation of Operation Control Strategies for a Novel Dual-Motor Coupling-Propulsion Pure Electric Vehicle," Energies, MDPI, vol. 11(4), pages 1-14, March.
    12. Du, Guodong & Zou, Yuan & Zhang, Xudong & Guo, Lingxiong & Guo, Ningyuan, 2022. "Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework," Energy, Elsevier, vol. 241(C).
    13. Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
    14. Pinto, Cláudio & Barreras, Jorge V. & de Castro, Ricardo & Araújo, Rui Esteves & Schaltz, Erik, 2017. "Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles," Energy, Elsevier, vol. 137(C), pages 272-284.
    15. Ernest Cortez & Manuel Moreno-Eguilaz & Francisco Soriano, 2018. "Advanced Methodology for the Optimal Sizing of the Energy Storage System in a Hybrid Electric Refuse Collector Vehicle Using Real Routes," Energies, MDPI, vol. 11(12), pages 1-17, November.
    16. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
    17. Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:79-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.