IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v156y2019icp91-109.html
   My bibliography  Save this article

A bivariate count model with discrete Weibull margins

Author

Listed:
  • Barbiero, A.

Abstract

Multivariate discrete data arise in many fields (statistical quality control, epidemiology, failure and reliability analysis, etc.) and modelling such data is a relevant task. Here we consider the construction of a bivariate model with discrete Weibull margins, based on Farlie–Gumbel–Morgenstern copula, analyse its properties especially in terms of attainable correlation, and propose several methods for the point estimation of its parameters. Two of them are the standard one-step and two-step maximum likelihood procedures; the other two are based on an approximate method of moments and on the method of proportion, which represent intuitive alternatives for estimating the dependence parameter. A Monte Carlo simulation study is presented, comprising more than one hundred artificial settings, which empirically assesses the performance of the different estimation techniques in terms of statistical properties and computational cost. For illustrative purposes, the model and related inferential procedures are fitted and applied to two datasets taken from the literature, concerning failure data, presenting either positive or negative correlation between the two observed variables. The applications show that the proposed bivariate discrete Weibull distribution can model correlated counts even better than existing and well-established joint distributions.

Suggested Citation

  • Barbiero, A., 2019. "A bivariate count model with discrete Weibull margins," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 91-109.
  • Handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:91-109
    DOI: 10.1016/j.matcom.2018.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James D Englehardt, 2015. "Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-30, June.
    2. C. R. Mitchell & A. S. Paulson, 1981. "A new bivariate negative binomial distribution," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(3), pages 359-374, September.
    3. James D. Englehardt & Ruochen Li, 2011. "The Discrete Weibull Distribution: An Alternative for Correlated Counts with Confirmation for Microbial Counts in Water," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 370-381, March.
    4. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    5. Cambanis, Stamatis, 1977. "Some properties and generalizations of multivariate Eyraud-Gumbel-Morgenstern distributions," Journal of Multivariate Analysis, Elsevier, vol. 7(4), pages 551-559, December.
    6. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    7. Xiao Jiang & Jeffrey Chu & Saralees Nadarajah, 2017. "New classes of discrete bivariate distributions with application to football data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(16), pages 8069-8085, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulhamid A. Alzaid & Weaam M. Alhadlaq, 2023. "A New Family of Archimedean Copulas: The Half-Logistic Family of Copulas," Mathematics, MDPI, vol. 12(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    2. Marbac, Matthieu & Sedki, Mohammed, 2017. "A family of block-wise one-factor distributions for modeling high-dimensional binary data," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 130-145.
    3. Romera, Rosario & Molanes, Elisa M., 2008. "Copulas in finance and insurance," DES - Working Papers. Statistics and Econometrics. WS ws086321, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    5. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    6. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    7. Mathews Joseph & Bhattacharya Sumangal & Sen Sumen & Das Ishapathik, 2022. "Multiple inflated negative binomial regression for correlated multivariate count data," Dependence Modeling, De Gruyter, vol. 10(1), pages 290-307, January.
    8. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    9. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    10. Wang, Mengjiao & Liu, Jianxu & Yang, Bing, 2024. "Does the strength of the US dollar affect the interdependence among currency exchange rates of RCEP and CPTPP countries?," Finance Research Letters, Elsevier, vol. 62(PA).
    11. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    12. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    13. Kolev, Nikolai, 2016. "Characterizations of the class of bivariate Gompertz distributions," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 173-179.
    14. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    15. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    16. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    17. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    18. Gery Geenens, 2024. "(Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem," Mathematics, MDPI, vol. 12(3), pages 1-7, January.
    19. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    20. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:91-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.