IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0129042.html
   My bibliography  Save this article

Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity

Author

Listed:
  • James D Englehardt

Abstract

Many complex systems produce outcomes having recurring, power law-like distributions over wide ranges. However, the form necessarily breaks down at extremes, whereas the Weibull distribution has been demonstrated over the full observed range. Here the Weibull distribution is derived as the asymptotic distribution of generalized first-order kinetic processes, with convergence driven by autocorrelation, and entropy maximization subject to finite positive mean, of the incremental compounding rates. Process increments represent multiplicative causes. In particular, illness severities are modeled as such, occurring in proportion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and by simulation to be robust to the onset of saturation kinetics. The Weibull exponential parameter is shown to indicate the number and widths of the first-order compounding increments, the extent of rate autocorrelation, and the degree to which process increments are distributed exponential. In contrast with the Gaussian result in linear independent systems, the form is driven not by independence and multiplicity of process increments, but by increment autocorrelation and entropy. In some physical systems the form may be attracting, due to multiplicative evolution of outcome magnitudes towards extreme values potentially much larger and smaller than control mechanisms can contain. The Weibull distribution is demonstrated in preference to the lognormal and Pareto I for illness severities versus (a) toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychological test score data for children with prenatal mercury exposure, and (d) time-to-tumor data of the ED01 study.

Suggested Citation

  • James D Englehardt, 2015. "Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-30, June.
  • Handle: RePEc:plo:pone00:0129042
    DOI: 10.1371/journal.pone.0129042
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129042
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0129042&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0129042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbiero, A., 2019. "A bivariate count model with discrete Weibull margins," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 91-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0129042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.