IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v155y2019icp277-289.html
   My bibliography  Save this article

Analysis of pulse period for passive neuron in pulse coupled neural network

Author

Listed:
  • Nie, Rencan
  • Cao, Jinde
  • Zhou, Dongming
  • Qian, Wenhua

Abstract

This paper investigates the passive pulse period for the passive neuron in discrete PCNN. We first define a dynamic comparative ratio instead of the logical comparison to describe the linear difference between neural inner state and dynamic threshold. Then a nearly accurate formula about the passive pulse period is given by using the max lower limit of dynamic comparative ratios, and the rationality of which is proved based on the error analysis between estimated and real passive pulse periods. Moreover, we deduce a stable pulse period from estimated pulse period such that the neuron could nonperiodically and periodically pulse in two different time phases, successively. Further, the initial phase, from which the passive neuron can start to pulse periodically, is estimated. Some examples are performed, and the results reach the consensus with theoretical analyses.

Suggested Citation

  • Nie, Rencan & Cao, Jinde & Zhou, Dongming & Qian, Wenhua, 2019. "Analysis of pulse period for passive neuron in pulse coupled neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 277-289.
  • Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:277-289
    DOI: 10.1016/j.matcom.2018.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Linna & Zhu, Quanxin, 2015. "Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 698-712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Li & Zhu, Haitao & Ding, Yanhui, 2020. "Impulsive control for persistence and periodicity of logistic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 294-305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Jianguo & Tan, Yahua & Guo, Yongfeng & Feng, Jianfeng, 2020. "Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "Strong convergence and almost sure exponential stability of balanced numerical approximations to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    3. Wan, Li & Zhou, Qinghua & Liu, Jie, 2017. "Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 68-72.
    4. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    5. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "The balanced split step theta approximations of stochastic neutral Hopfield neural networks with time delay and Poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    6. Zhifu Jia & Cunlin Li, 2023. "Almost Sure Exponential Stability of Uncertain Stochastic Hopfield Neural Networks Based on Subadditive Measures," Mathematics, MDPI, vol. 11(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:277-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.