IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v145y2018icp79-89.html
   My bibliography  Save this article

The projected Barzilai–Borwein method with fall-back for strictly convex QCQP problems with separable constraints

Author

Listed:
  • Pospíšil, Lukáš
  • Dostál, Zdeněk

Abstract

A variant of the projected Barzilai–Borwein method for solving the strictly convex QCQP problems with separable constraints is presented. The convergence is enforced by a combination of the fall-back strategy and the fixed step-length gradient projection. Using the recent results on the decrease of the convex quadratic function along the projected-gradient path, we prove that the algorithm enjoys the R-linear convergence. The algorithm is plugged into our scalable TFETI based domain decomposition algorithm for the solution of contact problems and its performance is demonstrated on the solution of contact problems, including a frictionless problem and the problems with the isotropic and orthotropic Tresca friction.

Suggested Citation

  • Pospíšil, Lukáš & Dostál, Zdeněk, 2018. "The projected Barzilai–Borwein method with fall-back for strictly convex QCQP problems with separable constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 145(C), pages 79-89.
  • Handle: RePEc:eee:matcom:v:145:y:2018:i:c:p:79-89
    DOI: 10.1016/j.matcom.2017.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birgin, Ernesto G. & Martínez, Jose Mario & Raydan, Marcos, 2014. "Spectral Projected Gradient Methods: Review and Perspectives," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
    2. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    3. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    4. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    5. Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
    6. Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
    7. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    8. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    9. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    10. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    11. Wolfgang Schadner, 2021. "Feasible Implied Correlation Matrices from Factor Structures," Papers 2107.00427, arXiv.org.
    12. Marco Viola & Mara Sangiovanni & Gerardo Toraldo & Mario R. Guarracino, 2019. "Semi-supervised generalized eigenvalues classification," Annals of Operations Research, Springer, vol. 276(1), pages 249-266, May.
    13. Milagros Loreto & Hugo Aponte & Debora Cores & Marcos Raydan, 2017. "Nonsmooth spectral gradient methods for unconstrained optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 529-553, December.
    14. Geovani N. Grapiglia & Ekkehard W. Sachs, 2017. "On the worst-case evaluation complexity of non-monotone line search algorithms," Computational Optimization and Applications, Springer, vol. 68(3), pages 555-577, December.
    15. Varadhan, Ravi, 2014. "Numerical Optimization in R: Beyond optim," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i01).
    16. Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
    17. Harry Fernando Oviedo Leon, 2019. "A delayed weighted gradient method for strictly convex quadratic minimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 729-746, December.
    18. Wolfgang Schadner & Joshua Traut, 2022. "Estimating Forward-Looking Stock Correlations from Risk Factors," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    19. Yu-Hong Dai & Yakui Huang & Xin-Wei Liu, 2019. "A family of spectral gradient methods for optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 43-65, September.
    20. O. P. Ferreira & M. Lemes & L. F. Prudente, 2022. "On the inexact scaled gradient projection method," Computational Optimization and Applications, Springer, vol. 81(1), pages 91-125, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:145:y:2018:i:c:p:79-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.