IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v25y2005i3p255-275.html
   My bibliography  Save this article

A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index Options

Author

Listed:
  • Cheng Lee
  • Gwo-Hshiung Tzeng
  • Shin-Yun Wang

Abstract

This paper applies fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy binomial option pricing model (OPM). The model can provide reasonable ranges of option prices, which many investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference values for a generalized CRR model in this article we use fuzzy volatility and fuzzy riskless interest rate to replace the corresponding crisp values. In the fuzzy binomial OPM, investors can correct their portfolio strategy according to the right and left value of triangular fuzzy number and they can interpret the optimal difference, according to their individual risk preferences. Finally, in this study an empirical analysis of S&P 500 index options is used to find that the fuzzy binomial OPM is much closer to the reality than the generalized CRR model. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Cheng Lee & Gwo-Hshiung Tzeng & Shin-Yun Wang, 2005. "A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index Options," Review of Quantitative Finance and Accounting, Springer, vol. 25(3), pages 255-275, November.
  • Handle: RePEc:kap:rqfnac:v:25:y:2005:i:3:p:255-275
    DOI: 10.1007/s11156-005-4767-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11156-005-4767-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-005-4767-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    4. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    5. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    8. Amin, Kaushik I, 1993. "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. C. F. Lee & Ta-Peng Wu & Ren-Raw Chen, 2004. "The Constant Elasticity of Variance Models: New Evidence from S&P 500 Index Options," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 173-190.
    11. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    13. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malcolm Beynon & Mark Clatworthy, 2013. "A fuzzy-based approach to residual income equity valuation," Review of Quantitative Finance and Accounting, Springer, vol. 40(4), pages 675-690, May.
    2. Hongjun Dai & Tao Sun & Wen Guo, 2016. "Brownfield Redevelopment Evaluation Based on Fuzzy Real Options," Sustainability, MDPI, vol. 8(2), pages 1-10, February.
    3. Smimou, K. & Bector, C.R. & Jacoby, G., 2008. "Portfolio selection subject to experts' judgments," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1036-1054, December.
    4. Zmeskal, Zdenek, 2010. "Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1096-1103, December.
    5. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    6. Marek Z. Reformat & Ronald R. Yager, 2015. "Soft Computing Techniques for Querying XBRL Data," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(3), pages 179-199, July.
    7. Yow-Jen Jou & Chih-Wei Wang & Wan-Chien Chiu, 2013. "Is the realized volatility good for option pricing during the recent financial crisis?," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 171-188, January.
    8. Ozge Yasar & Tulay Korkusuz Polat, 2022. "A Fuzzy-Based Application for Marketing 4.0 Brand Perception in the COVID-19 Process," Sustainability, MDPI, vol. 14(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    3. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    4. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    5. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    6. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    7. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    11. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.
    12. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    13. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    14. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    15. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    16. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    18. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    19. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    20. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:25:y:2005:i:3:p:255-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.