IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v20y1997i1-2p103-111.html
   My bibliography  Save this article

Estimation of Spatial Regression Models with Autoregressive Errors by Two-Stage Least Squares Procedures: A Serious Problem

Author

Listed:
  • Harry H. Kelejian

    (Department of Economics, University of Maryland, College Park, MD 20742 USA, kelejian@econ.umd.edu)

  • Ingmar R. Prucha

    (Department of Economics, University of Maryland, College Park, MD 20742 USA, prucha@econ.umd.edu)

Abstract

Time series regression models that have autoregressive errors are often estimated by two-stage procedures which are based on the Cochrane-Orcutt (1949) transformation. It seems natural to also attempt the estimation of spatial regression models whose error terms are autoregressive in terms of an analogous transformation. Various two-stage least squares procedures suggest themselves in this context, including an analog to Durbin's (1960) procedure. Indeed, these procedures are so suggestive and computationally convenient that they are quite "tempting." Unfortunately, however, as shown in this paper, these two-stage least squares procedures are generally, in a typical cross-sectional spatial context, not consistent and therefore should not be used.

Suggested Citation

  • Harry H. Kelejian & Ingmar R. Prucha, 1997. "Estimation of Spatial Regression Models with Autoregressive Errors by Two-Stage Least Squares Procedures: A Serious Problem," International Regional Science Review, , vol. 20(1-2), pages 103-111, April.
  • Handle: RePEc:sae:inrsre:v:20:y:1997:i:1-2:p:103-111
    DOI: 10.1177/016001769702000106
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/016001769702000106
    Download Restriction: no

    File URL: https://libkey.io/10.1177/016001769702000106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dubin, Robin A, 1988. "Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 466-474, August.
    2. Herman J. Bierens & A. R. Gallant (ed.), 1997. "Nonlinear Models," Books, Edward Elgar Publishing, volume 0, number 878.
    3. Blommestein, Hans J., 1983. "Specification and estimation of spatial econometric models : A discussion of alternative strategies for spatial economic modelling," Regional Science and Urban Economics, Elsevier, vol. 13(2), pages 251-270, May.
    4. Benedikt M. Pötscher & Ingmar R. Prucha, 1999. "Basic Elements of Asymptotic Theory," Electronic Working Papers 99-001, University of Maryland, Department of Economics.
    5. Anselin, Luc, 1990. "Some robust approaches to testing and estimation in spatial econometrics," Regional Science and Urban Economics, Elsevier, vol. 20(2), pages 141-163, September.
    6. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    7. P Burridge, 1981. "Testing for a Common Factor in a Spatial Autoregression Model," Environment and Planning A, , vol. 13(7), pages 795-800, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    4. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    5. Garrett, Thomas A. & Marsh, Thomas L., 2002. "The revenue impacts of cross-border lottery shopping in the presence of spatial autocorrelation," Regional Science and Urban Economics, Elsevier, vol. 32(4), pages 501-519, July.
    6. Khalid Haniza, 2015. "Spatial heterogeneity and spatial bias analyses in hedonic price models: some practical considerations," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 28(28), pages 113-128, June.
    7. Cem Ertur & Julie Le Gallo & Catherine Baumont, 2006. "The European Regional Convergence Process, 1980-1995: Do Spatial Regimes and Spatial Dependence Matter?," International Regional Science Review, , vol. 29(1), pages 3-34, January.
    8. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    9. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    10. Liqian Cai & Tapabrata Maiti, 2020. "Variable selection and estimation for high‐dimensional spatial autoregressive models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 587-607, June.
    11. Saavedra, Luz A., 2003. "Tests for spatial lag dependence based on method of moments estimation," Regional Science and Urban Economics, Elsevier, vol. 33(1), pages 27-58, January.
    12. Burridge, Peter, 2011. "A research agenda on general-to-specific spatial model search," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 21, pages 71-90.
    13. Cem Ertur & Thiaw Kalidou, 2005. "Growth and Spatial Dependence - The Mankiw, Romer and Weil model revisited," ERSA conference papers ersa05p660, European Regional Science Association.
    14. George Hondroyiannis & Harry Kelejian & George Tavlas, 2009. "Spatial Aspects of Contagion among Emerging Economies," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(2), pages 191-211.
    15. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    16. Fang, Ying & Park, Sung Y. & Zhang, Jinfeng, 2014. "A simple spatial dependence test robust to local and distributional misspecifications," Economics Letters, Elsevier, vol. 124(2), pages 203-206.
    17. Luc Anselin, 1988. "Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches," International Regional Science Review, , vol. 11(3), pages 279-316, December.
    18. Russell S. Sobel & Andrea M Dean, 2008. "Has Wal‐Mart Buried Mom And Pop?: The Impact Of Wal‐Mart On Self‐Employment And Small Establishments In The United States," Economic Inquiry, Western Economic Association International, vol. 46(4), pages 676-695, October.
    19. Kenneth A. Small & Seiji S.C. Steimetz, 2012. "Spatial Hedonics And The Willingness To Pay For Residential Amenities," Journal of Regional Science, Wiley Blackwell, vol. 52(4), pages 635-647, October.
    20. Mur, Jesús & Angulo, Ana, 2009. "Model selection strategies in a spatial setting: Some additional results," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 200-213, March.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:20:y:1997:i:1-2:p:103-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.