IDEAS home Printed from https://ideas.repec.org/a/eee/marpol/v46y2014icp72-83.html
   My bibliography  Save this article

Something fishy: Assessing stakeholder resilience to increasing jellyfish (Periphylla periphylla) in Trondheimsfjord, Norway

Author

Listed:
  • Gjelsvik Tiller, Rachel
  • Mork, Jarle
  • Richards, Russell
  • Eisenhauer, Lionel
  • Liu, Yajie
  • Nakken, Jens-Fredrik
  • Borgersen, Åshild.L

Abstract

The following article outlines of an assessment of the adaptive capacity of stakeholder groups in the Trondheimsfjord region to the impacts related to local changes in Periphylla periphylla (jellyfish) concentrations. This paper addresses the interaction between the socio-ecological system and the marine ecosystem and the management challenges inherent therein by focusing on a serious management problem that is occurring in several Norwegian fjords. This is the recent superabundance of the lower trophic level jellyfish species P. periphylla, which competes with commercial Norwegian fish species for a wide variety of pelagic organisms including redfeed (Calanus finmarchicus), a key species in the coastal ecosystem and a particularly important food item for all codfishes in coastal waters. P. periphylla has, however, also some properties that might make it a valuable new resource in Norwegian waters, namely its potential for being a new and abundant source of collagen. The question addressed here is how to manage this jellyfish species in a manner that is rational from both socio-political and ecological perspectives, exploring stakeholder perceptions concerning their adaptation options and capacity to implement these options to this new resource and management mitigation options based on a set of stakeholder driven future scenarios.

Suggested Citation

  • Gjelsvik Tiller, Rachel & Mork, Jarle & Richards, Russell & Eisenhauer, Lionel & Liu, Yajie & Nakken, Jens-Fredrik & Borgersen, Åshild.L, 2014. "Something fishy: Assessing stakeholder resilience to increasing jellyfish (Periphylla periphylla) in Trondheimsfjord, Norway," Marine Policy, Elsevier, vol. 46(C), pages 72-83.
  • Handle: RePEc:eee:marpol:v:46:y:2014:i:c:p:72-83
    DOI: 10.1016/j.marpol.2013.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308597X13002893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.marpol.2013.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    2. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    3. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    4. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    5. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    6. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    7. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    8. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Dayong Li & Zengchuan Dong & Liyao Shi & Jintao Liu & Zhenye Zhu & Wei Xu, 2019. "Risk Probability Assessment of Sudden Water Pollution in the Plain River Network Based on Random Discharge from Multiple Risk Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4051-4065, September.
    10. Tiller, Rachel Gjelsvik & Hansen, Lillian & Richards, Russell & Strand, Hillevi, 2015. "Work segmentation in the Norwegian salmon industry: The application of segmented labor market theory to work migrants on the island community of Frøya, Norway," Marine Policy, Elsevier, vol. 51(C), pages 563-572.
    11. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    12. Jinjia Zhang & Yiping Zeng & Genserik Reniers & Jie Liu, 2022. "Analysis of the Interaction Mechanism of the Risk Factors of Gas Explosions in Chinese Underground Coal Mines," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    13. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.
    14. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    15. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    17. Mastrangelo, Matias Enrique & Sun, Zhanli & Seghezzo, Lucas & Müller, Daniel, 2019. "Survey-based modeling of land-use intensity in agricultural frontiers of the Argentine dry Chaco," Land Use Policy, Elsevier, vol. 88(C).
    18. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    19. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    20. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:marpol:v:46:y:2014:i:c:p:72-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/marpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.