IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v141y2024ics0264837724001170.html
   My bibliography  Save this article

Comparison of comprehensive benefits of land-use systems under multi- and single-element governance

Author

Listed:
  • Xia, Fangzhou
  • Huang, Yujin
  • Dong, Likuan

Abstract

Considering the decline in the ecosystem service value (ESV) caused by rapid urbanization, China has recently conducted large-scale comprehensive ecological governance of “mountain, water, forest, field, lake and grass”; however, theoretical analyses of such systematic governance are lacking. This study compares the effects of multi- and single-element governance from a systematic perspective. This study proposes a hierarchical model integrating land-use simulation and comprehensive benefit evaluation based on remote sensing data of land-use in the Hebei Province, China, between 2000 and 2019. It compares the ESV and subtotal ecological-economic product (SEP), which reflects comprehensive benefits under ten governance scenarios. The results revealed significant urban expansion, amounting to 7516 km2, with significant changes in cultivated land and grassland. The ESV increased from 89.2 to 134.6 billion USD from 2000 to 2019, with regulatory and support services as the primary types of ecosystem services. With single-element governance, the ESV and SEP of water area governance were higher than those of woodland and cultivated land. With multi-element governance, the ESV and SEP of governance focusing on water areas were higher than those focusing on woodland and cultivated land. Moreover, multi-element ecological governance was found to be superior to single-element governance. Ecological governance of water areas and woodland ensured higher comprehensive benefits, while avoiding risks caused by excessive changes in land-use structure. The lower ESV and ESP of other multi- and single-element governance were primarily owing to two types of conversion: 1) grassland to woodland and cultivated land, and 2) water areas to cultivated land. Therefore, it is necessary to focus on the core elements of regional ecosystems and implement comprehensive ecological governance, address practical problems of land consolidation and ecological governance, and appropriately introduce market forces to realize the operation and management of the entire process and life cycle. These findings could provide a scientific reference for other regions in China and other developing countries implementing ecological governance practices.

Suggested Citation

  • Xia, Fangzhou & Huang, Yujin & Dong, Likuan, 2024. "Comparison of comprehensive benefits of land-use systems under multi- and single-element governance," Land Use Policy, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:lauspo:v:141:y:2024:i:c:s0264837724001170
    DOI: 10.1016/j.landusepol.2024.107164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837724001170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2024.107164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunyang He & Zhifeng Liu & Jianguo Wu & Xinhao Pan & Zihang Fang & Jingwei Li & Brett A. Bryan, 2021. "Future global urban water scarcity and potential solutions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Cao, Yanni & Kong, Lingqiao & Zhang, Lufeng & Ouyang, Zhiyun, 2021. "The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015," Land Use Policy, Elsevier, vol. 108(C).
    3. Rong Tan & Rumei Hu & Arild Vatn, 2021. "What does sustainability demand? An institutionalist analysis with applications to China," Journal of Chinese Governance, Taylor & Francis Journals, vol. 6(4), pages 486-514, October.
    4. Jingjing Shao & Jingfeng Ge & Xiaomiao Feng & Chaoran Zhao, 2020. "Study on the relationship between PM2.5 concentration and intensive land use in Hebei Province based on a spatial regression model," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    5. Ouyang, Xiao & Tang, Lisha & Wei, Xiao & Li, Yonghui, 2021. "Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations," Land Use Policy, Elsevier, vol. 109(C).
    6. Barua, Sepul K. & Boscolo, Marco & Animon, Illias, 2020. "Valuing forest-based ecosystem services in Bangladesh: Implications for research and policies," Ecosystem Services, Elsevier, vol. 42(C).
    7. Jiang, Hongqiang & Wu, Wenjun & Wang, Jinnan & Yang, Weishan & Gao, Yueming & Duan, Yang & Ma, Guoxia & Wu, Chunsheng & Shao, Jiacheng, 2021. "Mapping global value of terrestrial ecosystem services by countries," Ecosystem Services, Elsevier, vol. 52(C).
    8. Meynhardt, Timo & Chandler, Jennifer D. & Strathoff, Pepe, 2016. "Systemic principles of value co-creation: Synergetics of value and service ecosystems," Journal of Business Research, Elsevier, vol. 69(8), pages 2981-2989.
    9. Boyd, James & Banzhaf, Spencer, 2007. "What are ecosystem services? The need for standardized environmental accounting units," Ecological Economics, Elsevier, vol. 63(2-3), pages 616-626, August.
    10. Wang, Jieyong & Liu, Yanjiao & Li, Yurui, 2019. "Ecological restoration under rural restructuring: A case study of Yan’an in China’s loess plateau," Land Use Policy, Elsevier, vol. 87(C).
    11. Yan, Jinming & Zhang, Dongsheng & Xia, Fangzhou, 2021. "Evaluation of village land use planning risks in green concepts: The case of Qiwangfen Village in Beijing," Land Use Policy, Elsevier, vol. 104(C).
    12. Sutton, Paul C. & Costanza, Robert, 2002. "Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation," Ecological Economics, Elsevier, vol. 41(3), pages 509-527, June.
    13. Xiangzheng Deng & John Gibson, 2020. "Sustainable land use management for improving land eco-efficiency: a case study of Hebei, China," Annals of Operations Research, Springer, vol. 290(1), pages 265-277, July.
    14. Yuhan Yu & Mengmeng Yu & Lu Lin & Jiaxin Chen & Dongjie Li & Wenting Zhang & Kai Cao, 2019. "National Green GDP Assessment and Prediction for China Based on a CA-Markov Land Use Simulation Model," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    15. Sen Yu & Mingyu Wang, 2014. "Comprehensive Evaluation of Scenario Schemes for Multi-objective Decision-making in River Ecological Restoration by Artificially Recharging River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5555-5571, December.
    16. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    17. Kuang, Wenhui, 2020. "National urban land-use/cover change since the beginning of the 21st century and its policy implications in China," Land Use Policy, Elsevier, vol. 97(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Nengwang & Li, Huancheng & Wang, Lihong, 2009. "A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications," Ecological Economics, Elsevier, vol. 68(11), pages 2768-2776, September.
    2. Jonathan Boston & Frieder Lempp, 2011. "Climate change," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 24(8), pages 1000-1021, October.
    3. Ping Zhang & Liang He & Xin Fan & Peishu Huo & Yunhui Liu & Tao Zhang & Ying Pan & Zhenrong Yu, 2015. "Ecosystem Service Value Assessment and Contribution Factor Analysis of Land Use Change in Miyun County, China," Sustainability, MDPI, vol. 7(6), pages 1-24, June.
    4. Ileana Pătru-Stupariu & Constantina Alina Hossu & Simona Raluca Grădinaru & Andreea Nita & Mihai-Sorin Stupariu & Alina Huzui-Stoiculescu & Athanasios-Alexandru Gavrilidis, 2020. "A Review of Changes in Mountain Land Use and Ecosystem Services: From Theory to Practice," Land, MDPI, vol. 9(9), pages 1-21, September.
    5. Li Li & Yonghui Li & Lan Yang & Ying Liang & Wenliang Zhao & Guanyu Chen, 2022. "How Does Topography Affect the Value of Ecosystem Services? An Empirical Study from the Qihe Watershed," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    6. Campbell, Elliott & Marks, Rachel & Conn, Christine, 2020. "Spatial modeling of the biophysical and economic values of ecosystem services in Maryland, USA," Ecosystem Services, Elsevier, vol. 43(C).
    7. Miroshnyk, N.V. & Likhanov, A.F. & Grabovska, T.O. & Teslenko, I.K. & Roubík, H., 2022. "Green infrastructure and relationship with urbanization – Importance and necessity of integrated governance," Land Use Policy, Elsevier, vol. 114(C).
    8. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    9. Chen, Wanxu & Chi, Guangqing, 2022. "Urbanization and ecosystem services: The multi-scale spatial spillover effects and spatial variations," Land Use Policy, Elsevier, vol. 114(C).
    10. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    11. Brown, Greg, 2013. "The relationship between social values for ecosystem services and global land cover: An empirical analysis," Ecosystem Services, Elsevier, vol. 5(C), pages 58-68.
    12. Zheng Zang & Yuqing Zhang & Xu Xi, 2022. "Analysis of the Gross Ecosystem Product—Gross Domestic Product Synergistic States, Evolutionary Process, and Their Regional Contribution to the Chinese Mainland," Land, MDPI, vol. 11(5), pages 1-14, May.
    13. Kertész, Ádám & Nagy, Loránd Attila & Balázs, Boglárka, 2019. "Effect of land use change on ecosystem services in Lake Balaton Catchment," Land Use Policy, Elsevier, vol. 80(C), pages 430-438.
    14. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    15. Kibria, Abu SMG & Costanza, Robert & Soto, José R, 2022. "Modeling the complex associations of human wellbeing dimensions in a coupled human-natural system: In contexts of marginalized communities," Ecological Modelling, Elsevier, vol. 466(C).
    16. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    17. da Silva, Agostinho & Almeida, Isabel, 2020. "Towards INDUSTRY 4.0 | a case STUDY in ornamental stone sector," Resources Policy, Elsevier, vol. 67(C).
    18. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    19. Krittaya Sangkasem & Nattapong Puttanapong, 2022. "Analysis of spatial inequality using DMSP‐OLS nighttime‐light satellite imageries: A case study of Thailand," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 828-849, August.
    20. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:141:y:2024:i:c:s0264837724001170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.