IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v91y2024ics0957178724001309.html
   My bibliography  Save this article

Measuring wholesale electricity price risk from climate change: Evidence from Portugal

Author

Listed:
  • Entezari, Negin
  • Fuinhas, José Alberto

Abstract

The increasing widespread utilization of renewable energy sources, especially those reliant on the weather, coupled with the effects of climate change, is making electricity markets more sensitive to weather conditions. Portugal relies heavily on hydropower for its domestic energy generation. With its robust VAR approach, this study aims to comprehend how water resource variations due to precipitation patterns or reservoir levels influence price dynamics in the wholesale electricity market. By investigating whether these price increases are associated with temperature variations and considering the impact of temperature on both electricity demand and the availability of water resources for power generation, we provide crucial insights into the vulnerability of the electricity system to hydrological uncertainties. These findings can help stakeholders, including policymakers and industry professionals, develop effective strategies to manage price fluctuations. Understanding these relationships is critical to informed decision-making regarding resource allocation, energy market regulations, and infrastructure planning to mitigate the impact of climate-induced changes on electricity prices.

Suggested Citation

  • Entezari, Negin & Fuinhas, José Alberto, 2024. "Measuring wholesale electricity price risk from climate change: Evidence from Portugal," Utilities Policy, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:juipol:v:91:y:2024:i:c:s0957178724001309
    DOI: 10.1016/j.jup.2024.101837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178724001309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2024.101837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Jieyi & Reiner, David M., 2022. "What is the effect of weather on household electricity consumption? Empirical evidence from Ireland," Energy Economics, Elsevier, vol. 111(C).
    2. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    3. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    6. Furió, Dolores & Meneu, Vicente, 2010. "Expectations and forward risk premium in the Spanish deregulated power market," Energy Policy, Elsevier, vol. 38(2), pages 784-793, February.
    7. Rick Steinert and Florian Ziel, 2019. "Short- to Mid-term Day-Ahead Electricity Price Forecasting Using Futures," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Boogert, Alexander & Dupont, Dominique, 2005. "The nature of supply side effects on electricity prices: The impact of water temperature," Economics Letters, Elsevier, vol. 88(1), pages 121-125, July.
    10. Philipp Krueger & Zacharias Sautner & Laura T Starks, 2020. "The Importance of Climate Risks for Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1067-1111.
    11. Hipòlit Torró & Julio Lucia, 2008. "Short-term electricity futures prices: Evidence on the time-varying risk premium," Working Papers. Serie EC 2008-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    13. Rick Steinert & Florian Ziel, 2019. "Short- to Mid-term Day-Ahead Electricity Price Forecasting Using Futures," The Energy Journal, , vol. 40(1), pages 105-128, January.
    14. Rafal Weron, 2014. "A review of electricity price forecasting: The past, the present and the future," HSC Research Reports HSC/14/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    15. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    16. Hatemi-J, Abdulnasser, 2004. "Multivariate tests for autocorrelation in the stable and unstable VAR models," Economic Modelling, Elsevier, vol. 21(4), pages 661-683, July.
    17. Shahbaz, Muhammad & Trabelsi, Nader & Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Jiao, Zhilun, 2021. "Relationship between green investments, energy markets, and stock markets in the aftermath of the global financial crisis," Energy Economics, Elsevier, vol. 104(C).
    18. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    19. Wei, Hua & Rizvi, Syed Kumail Abbas & Ahmad, Ferhana & Zhang, Yuchen, 2020. "Resource cursed or resource blessed? The role of investment and energy prices in G7 countries," Resources Policy, Elsevier, vol. 67(C).
    20. repec:bla:jfinan:v:59:y:2004:i:4:p:1877-1900 is not listed on IDEAS
    21. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    22. S. W. D. Turner & N. Voisin & J. Fazio & D. Hua & M. Jourabchi, 2019. "Compound climate events transform electrical power shortfall risk in the Pacific Northwest," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    23. Richard P. Rumelt, 1991. "How much does industry matter?," Strategic Management Journal, Wiley Blackwell, vol. 12(3), pages 167-185, March.
    24. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Estevão, João & Raposo, Clara, 2018. "The impact of the 2030 Climate and Energy Framework Agreement on electricity prices in MIBEL: A mixed-methods approach," Journal of Business Research, Elsevier, vol. 89(C), pages 411-417.
    2. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    3. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    4. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    5. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    6. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    7. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    8. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    9. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    10. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    11. Pawel Maryniak & Rafal Weron, 2014. "Forecasting the occurrence of electricity price spikes in the UK power market," HSC Research Reports HSC/14/11, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    12. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    13. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    14. Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
    15. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    16. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    17. Mehtap Kilic & Ronald Huisman, 2010. "Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices," Tinbergen Institute Discussion Papers 10-070/2, Tinbergen Institute.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.
    20. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2020. "Predictive Trading Strategy for Physical Electricity Futures," Energies, MDPI, vol. 13(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:91:y:2024:i:c:s0957178724001309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.