IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5227-d620538.html
   My bibliography  Save this article

County Clustering with Bioenergy as Flexible Power Unit in a Renewable Energy System

Author

Listed:
  • Laura Stößel

    (Chair for Wind Power Drives, RWTH Aachen University, Campus-Boulevard 61, 52074 Aachen, Germany)

  • Leila Poddie

    (Chair for Wind Power Drives, RWTH Aachen University, Campus-Boulevard 61, 52074 Aachen, Germany)

  • Tobias Spratte

    (Chair for Wind Power Drives, RWTH Aachen University, Campus-Boulevard 61, 52074 Aachen, Germany)

  • Ralf Schelenz

    (Chair for Wind Power Drives, RWTH Aachen University, Campus-Boulevard 61, 52074 Aachen, Germany)

  • Georg Jacobs

    (Institute for Machine Elements and System Engineering, RWTH Aachen University, Schinkelstraße 10, 52062 Aachen, Germany)

Abstract

The pressure on the energy sector to reduce greenhouse gas emissions is increasing. In the light of current greenhouse gas emissions in the energy sector, further expansion of renewable energy sources (RES) is inevitable to reduce emissions and reach the climate goals. This study aims at investigating structural characteristics of German counties regarding advantages for self-sufficient power systems based on RES. The modelling of the power sector based on RES is coupled with a cluster analysis in order to draw a large-scale conclusion on structural characteristics beneficial or obstructive for municipal energy systems. Ten clusters are identified with the Ward algorithm in a hierarchical-agglomerative method. The results underline a further need for RES expansion projects in order to close the gap between supply and demand. Only then, bioenergy can effectively balance the offset and support a truly self-sufficient local energy system. While the model results indicate that the majority of the counties are suitable for further expansion, this suitability is to be questioned in cluster 10. High population density is a critical characteristic, because with it come both a high demand and limited sites for further RES expansion projects.

Suggested Citation

  • Laura Stößel & Leila Poddie & Tobias Spratte & Ralf Schelenz & Georg Jacobs, 2021. "County Clustering with Bioenergy as Flexible Power Unit in a Renewable Energy System," Energies, MDPI, vol. 14(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5227-:d:620538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    2. Schmidt, J. & Schönhart, M. & Biberacher, M. & Guggenberger, T. & Hausl, S. & Kalt, G. & Leduc, S. & Schardinger, I. & Schmid, E., 2012. "Regional energy autarky: Potentials, costs and consequences for an Austrian region," Energy Policy, Elsevier, vol. 47(C), pages 211-221.
    3. Hobman, Elizabeth V. & Ashworth, Peta, 2013. "Public support for energy sources and related technologies: The impact of simple information provision," Energy Policy, Elsevier, vol. 63(C), pages 862-869.
    4. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    5. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    6. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    7. Lucas Blickwedel & Laura Stößel & Ralf Schelenz & Georg Jacobs, 2020. "Multicriterial Evaluation of Renewable Energy Expansion Projects at Municipal Level for the Available Biomass Potential," Energies, MDPI, vol. 13(23), pages 1-17, November.
    8. McKenna, Russell, 2018. "The double-edged sword of decentralized energy autonomy," Energy Policy, Elsevier, vol. 113(C), pages 747-750.
    9. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    2. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    3. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    4. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    5. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    6. Kühnbach, Matthias & Pisula, Stefan & Bekk, Anke & Weidlich, Anke, 2020. "How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany," Applied Energy, Elsevier, vol. 280(C).
    7. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    8. Escribano, Gonzalo & González-Enríquez, Carmen & Lázaro-Touza, Lara & Paredes-Gázquez, Juandiego, 2023. "An energy union without interconnections? Public acceptance of cross-border interconnectors in four European countries," Energy, Elsevier, vol. 266(C).
    9. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    10. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    11. Kânoğlu-Özkan, Dilge Güldehen & Soytaş, Uğur, 2022. "The social acceptance of shale gas development: Evidence from Turkey," Energy, Elsevier, vol. 239(PC).
    12. Marina Blohm, 2021. "An Enabling Framework to Support the Sustainable Energy Transition at the National Level," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    13. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    14. Lucas Blickwedel & Laura Stößel & Ralf Schelenz & Georg Jacobs, 2020. "Multicriterial Evaluation of Renewable Energy Expansion Projects at Municipal Level for the Available Biomass Potential," Energies, MDPI, vol. 13(23), pages 1-17, November.
    15. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    16. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    17. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    18. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    19. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    20. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5227-:d:620538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.