IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v19y2011i2p95-103.html
   My bibliography  Save this article

The carbon performance of the 100 largest US electricity producers

Author

Listed:
  • Busch, Timo
  • Weinhofer, Georg
  • Hoffmann, Volker H.

Abstract

Efforts towards decarbonizing the energy system have to focus on individual actors within the system. Their current and potential future stake in energy consumption and contribution to climate change has to be analyzed when formulating energy policies targeting system-wide reduction efforts. Focusing on firms, this paper develops a framework for the assessment of corporate carbon performance. We use this framework for an empirical assessment of the 100 largest US electricity producers within three different carbon scenarios. Our results show that in a scenario without changes in the US institutional environment electricity producers will not face a severe increase of their carbon exposure and only a small improvement regarding the carbon intensity of the electricity mix is achieved. In a scenario with more carbon-constrained US energy market conditions some companies face a financial risk from using and emitting carbon that more than triples compared to today. However, in a scenario with strong investments in renewable energy technologies the carbon dependency of electricity production can be significantly reduced. We discuss these findings from a climate policy and financial markets perspective.

Suggested Citation

  • Busch, Timo & Weinhofer, Georg & Hoffmann, Volker H., 2011. "The carbon performance of the 100 largest US electricity producers," Utilities Policy, Elsevier, vol. 19(2), pages 95-103, June.
  • Handle: RePEc:eee:juipol:v:19:y:2011:i:2:p:95-103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957-1787(10)00071-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meier, Paul J. & Wilson, Paul P. H. & Kulcinski, Gerald L. & Denholm, Paul L., 2005. "US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives," Energy Policy, Elsevier, vol. 33(9), pages 1099-1108, June.
    2. Repetto, R. & Henderson, J., 2003. "Environmental exposures in the US electric utility industry," Utilities Policy, Elsevier, vol. 11(2), pages 103-111, June.
    3. Kydes, Andy S., 2007. "Impacts of a renewable portfolio generation standard on US energy markets," Energy Policy, Elsevier, vol. 35(2), pages 809-814, February.
    4. Nagesha, N. & Balachandra, P., 2006. "Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process," Energy, Elsevier, vol. 31(12), pages 1969-1983.
    5. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    6. Busch, Timo & Hoffmann, Volker H., 2007. "Emerging carbon constraints for corporate risk management," Ecological Economics, Elsevier, vol. 62(3-4), pages 518-528, May.
    7. Georg Weinhofer & Volker H. Hoffmann, 2010. "Mitigating climate change – how do corporate strategies differ?," Business Strategy and the Environment, Wiley Blackwell, vol. 19(2), pages 77-89, February.
    8. Magali Delmas & Michael V. Russo & Maria J. Montes‐Sancho, 2007. "Deregulation and environmental differentiation in the electric utility industry," Strategic Management Journal, Wiley Blackwell, vol. 28(2), pages 189-209, February.
    9. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    10. Schleich, Joachim, 2009. "Barriers to energy efficiency: A comparison across the German commercial and services sector," Ecological Economics, Elsevier, vol. 68(7), pages 2150-2159, May.
    11. Sun, J. W., 2005. "The decrease of CO2 emission intensity is decarbonization at national and global levels," Energy Policy, Elsevier, vol. 33(8), pages 975-978, May.
    12. Sekar, Ram C. & Parsons, John E. & Herzog, Howard J. & Jacoby, Henry D., 2007. "Future carbon regulations and current investments in alternative coal-fired power plant technologies," Energy Policy, Elsevier, vol. 35(2), pages 1064-1074, February.
    13. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi, Hongtao, 2015. "Clean-energy policies and electricity sector carbon emissions in the U.S. states," Utilities Policy, Elsevier, vol. 34(C), pages 19-29.
    2. Vlad-Cosmin Bulai & Alexandra Horobet & Oana Cristina Popovici & Lucian Belascu & Sofia Adriana Dumitrescu, 2021. "A VaR-Based Methodology for Assessing Carbon Price Risk across European Union Economic Sectors," Energies, MDPI, vol. 14(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    3. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    4. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 93-106, June.
    5. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    6. Trianni, A. & Cagno, E., 2012. "Dealing with barriers to energy efficiency and SMEs: Some empirical evidences," Energy, Elsevier, vol. 37(1), pages 494-504.
    7. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    8. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    9. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    10. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    11. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    12. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    13. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    14. Nadine Gatzert & Philipp Reichel, 2022. "Awareness of climate risks and opportunities: empirical evidence on determinants and value from the U.S. and European insurance industry," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 5-26, January.
    15. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    16. Barradale, Merrill Jones, 2014. "Investment under uncertain climate policy: A practitioners׳ perspective on carbon risk," Energy Policy, Elsevier, vol. 69(C), pages 520-535.
    17. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    18. Antonella Biscione & Annunziata de Felice & Teodoro Gallucci, 2022. "Energy Saving in Transition Economies: Environmental Activities in Manufacturing Firms," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    19. Zhu, Junming & Chertow, Marian R., 2017. "Business Strategy Under Institutional Constraints: Evidence From China's Energy Efficiency Regulations," Ecological Economics, Elsevier, vol. 135(C), pages 10-21.
    20. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:19:y:2011:i:2:p:95-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.