IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v77y2022ics030142072200215x.html
   My bibliography  Save this article

Patterns and features of embodied environmental flow networks in the international trade of metal resources: A study of aluminum

Author

Listed:
  • Di, Jinghan
  • Wen, Zongguo
  • Jiang, Meihui
  • Miatto, Alessio

Abstract

This research analyzes the embodied environmental impacts in the global trade network of aluminum in 2020. To do so, we combine life cycle assessment with complex network analysis. The global trade of aluminum is subdivided into ores and concentrates, compounds, products, and waste. The end goal of this study is to identify the key countries of the aluminum trading network and to aid policymakers in creating sound trade policies that lower global environmental impacts. We find that the trade of highly processed products has limited influence on the trade of environmental impacts, while raw materials and metal scraps have a large contribution. Mainland China, India, Turkey, Germany, the United States, Spain, and Belgium are key intermediate countries and act as transferring hubs of environmental impacts from neighboring countries to emerging economies. To reduce the environmental impacts embedded in the trade of aluminum, we recommend for the key intermediate countries to monetize the embedded environmental impacts in the form of tariffs. We also suggest that upstream countries with low-emission technologies should support—and be supported by—downstream countries in a concerted effort to reduce environmental pressure.

Suggested Citation

  • Di, Jinghan & Wen, Zongguo & Jiang, Meihui & Miatto, Alessio, 2022. "Patterns and features of embodied environmental flow networks in the international trade of metal resources: A study of aluminum," Resources Policy, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200215x
    DOI: 10.1016/j.resourpol.2022.102767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072200215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Di & Gao, Xiangyun & Sun, Xiaoqi & Liu, Xueyong, 2018. "Factors affecting the formation of copper international trade community: Based on resource dependence and network theory," Resources Policy, Elsevier, vol. 57(C), pages 167-185.
    2. Zhao, Yiran & Gao, Xiangyun & An, Haizhong & Xi, Xian & Sun, Qingru & Jiang, Meihui, 2020. "The effect of the mined cobalt trade dependence Network's structure on trade price," Resources Policy, Elsevier, vol. 65(C).
    3. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    4. Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.
    5. Li, Baihua & Li, Huajiao & Dong, Zhiliang & Lu, Yu & Liu, Nairong & Hao, Xiaoqing, 2021. "The global copper material trade network and risk evaluation: A industry chain perspective," Resources Policy, Elsevier, vol. 74(C).
    6. Biswajit Sarkar & Waqas Ahmed & Seok-Beom Choi & Muhammad Tayyab, 2018. "Sustainable Inventory Management for Environmental Impact through Partial Backordering and Multi-Trade-Credit-Period," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    7. Wang, Xingxing & Li, Huajiao & Yao, Huajun & Chen, Zhihua & Guan, Qing, 2019. "Network feature and influence factors of global nature graphite trade competition," Resources Policy, Elsevier, vol. 60(C), pages 153-161.
    8. Hou, Wenyu & Liu, Huifang & Wang, Hui & Wu, Fengyang, 2018. "Structure and patterns of the international rare earths trade: A complex network analysis," Resources Policy, Elsevier, vol. 55(C), pages 133-142.
    9. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
    10. Kopp, Thomas & Salecker, Jan, 2020. "How traders influence their neighbours: Modelling social evolutionary processes and peer effects in agricultural trade networks," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    11. Giudici, Paolo & Huang, Bihong & Spelta, Alessandro, 2019. "Trade networks and economic fluctuations in Asian countries," Economic Systems, Elsevier, vol. 43(2), pages 1-1.
    12. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    13. Andrea Landherr & Bettina Friedl & Julia Heidemann, 2010. "A Critical Review of Centrality Measures in Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(6), pages 371-385, December.
    14. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    15. Jiajia Li & Abbas Ali Chandio & Yucong Liu, 2020. "Trade Impacts on Embodied Carbon Emissions—Evidence from the Bilateral Trade between China and Germany," IJERPH, MDPI, vol. 17(14), pages 1-19, July.
    16. Leng, Zhihui & Sun, Han & Cheng, Jinhua & Wang, Hai & Yao, Zhen, 2021. "China's rare earth industry technological innovation structure and driving factors: A social network analysis based on patents," Resources Policy, Elsevier, vol. 73(C).
    17. Ren, Shuai & Li, Huajiao & Wang, Yanli & Guo, Chen & Feng, Sida & Wang, Xingxing, 2021. "Comparative study of the China and U.S. import trade structure based on the global chromium ore trade network," Resources Policy, Elsevier, vol. 73(C).
    18. Lisa A. Levin & Diva J. Amon & Hannah Lily, 2020. "Challenges to the sustainability of deep-seabed mining," Nature Sustainability, Nature, vol. 3(10), pages 784-794, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    2. Liu, Chengyi & Zhang, Luzi & Wu, Fan & Xia, Ruoxuan, 2024. "Role of sustainable management policy and carbon neutral processes in improving sustainable performance: Study of China's aluminium sector," Resources Policy, Elsevier, vol. 88(C).
    3. Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
    4. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    5. Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Uncovering the features of global antimony resource trade network," Resources Policy, Elsevier, vol. 85(PA).
    6. Chen, Wei & Dai, Yiyang & Liu, Zhigao & Zhang, Haipeng, 2024. "The evolution of global zinc trade network: Patterns and implications," Resources Policy, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Qianyong & Li, Huajiao & Qi, Yajie & Li, Yang & Liu, Haiping & Wang, Xingxing, 2023. "The reliability of the trade dependence network in the tungsten industry chain based on percolation," Resources Policy, Elsevier, vol. 82(C).
    2. Zhu, Mingxue & Zhou, Xuanru & Zhang, Hua & Wang, Lu & Sun, Haoyu, 2023. "International trade evolution and competition prediction of boron ore: Based on complex network and link prediction," Resources Policy, Elsevier, vol. 82(C).
    3. Zuo, Zhili & McLellan, Benjamin Craig & Li, Yonglin & Guo, Haixiang & Cheng, Jinhua, 2022. "Evolution and insights into the network and pattern of the rare earths trade from an industry chain perspective," Resources Policy, Elsevier, vol. 78(C).
    4. Song, Yi & Bai, Wenbo & Zhang, Yijun, 2024. "Resilience assessment of trade network in copper industry chain and the risk resistance capacity of core countries: Based on complex network," Resources Policy, Elsevier, vol. 92(C).
    5. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    6. Zhang, Hongwei & Wang, Xinyi & Tang, Jing & Guo, Yaoqi, 2022. "The impact of international rare earth trade competition on global value chain upgrading from the industrial chain perspective," Ecological Economics, Elsevier, vol. 198(C).
    7. Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
    8. Ma, Yu & Wang, Minxi & Li, Xin, 2022. "Analysis of the characteristics and stability of the global complex nickel ore trade network," Resources Policy, Elsevier, vol. 79(C).
    9. Liu, Haiping & Li, Huajiao & Qi, Yajie & An, Pengli & Shi, Jianglan & Liu, Yanxin, 2021. "Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks," Resources Policy, Elsevier, vol. 74(C).
    10. Lu, Shuai & Chen, Ning & Zhou, Wei & Li, Shouwei, 2024. "Impact of the belt and road initiative on trade status and FDI attraction: A local and global network perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1468-1495.
    11. Shao, Liuguo & Hu, Jianying & Zhang, Hua, 2021. "Evolution of global lithium competition network pattern and its influence factors," Resources Policy, Elsevier, vol. 74(C).
    12. Zheng, Shuxian & Zhou, Xuanru & Xing, Wanli & Zhao, Pei, 2022. "Analysis on the evolution characteristics of kaolin international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 77(C).
    13. Guo, Qing & Wang, Yiling, 2024. "Rare earth trade dependence network structure and its impact on trade prices: An industry chain perspective," Resources Policy, Elsevier, vol. 91(C).
    14. Huang, Jianbai & Ding, Qian & Wang, Ying & Hong, Huojun & Zhang, Hongwei, 2021. "The evolution and influencing factors of international tungsten competition from the industrial chain perspective," Resources Policy, Elsevier, vol. 73(C).
    15. Tianrui Wang & Yu Chen & Leya Zeng, 2022. "Spatial-Temporal Evolution Analysis of Carbon Emissions Embodied in Inter-Provincial Trade in China," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    16. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    17. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    18. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    19. Zhang, Ling & Wen, Shaobo, 2024. "The influence of global gallium trade network dynamics on price: A complex network and panel regression approach," Resources Policy, Elsevier, vol. 93(C).
    20. Li, Yingli & Huang, Jianbai & Zhang, Hongwei, 2022. "The impact of country risks on cobalt trade patterns from the perspective of the industrial chain," Resources Policy, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200215x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.