IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v72y2021ics0301420721000623.html
   My bibliography  Save this article

Gold and silver prices, their stocks and market fear gauges: Testing fractional cointegration using a robust approach

Author

Listed:
  • Yaya, OlaOluwa S.
  • Vo, Xuan Vinh
  • Olayinka, Hammed A.

Abstract

The present paper investigates the long-run relationships between daily prices, stocks and fear gauges of gold and silver by employing an updated fractional cointegrating framework, that is, the Fractional Cointegrating Vector Autoregression (FCVAR). The initial unit root tests results indicate that the series are I(d)s with values of d around 1 in all cases, and these are homogenous in the paired cointegrating series. Evidence of cointegration is found in the three pairs (prices, stocks and market gauge indices), while these cointegrations are only time-varying in the case of market gauge indices for the commodities. The fact that cointegration exists in prices and stocks of gold and silver implies the possibility that gold and silver prices and stocks can interchangeably be used to access the performances of the commodity markets, with the recommendation that the two commodities are not to be traded in the same portfolio.

Suggested Citation

  • Yaya, OlaOluwa S. & Vo, Xuan Vinh & Olayinka, Hammed A., 2021. "Gold and silver prices, their stocks and market fear gauges: Testing fractional cointegration using a robust approach," Resources Policy, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:jrpoli:v:72:y:2021:i:c:s0301420721000623
    DOI: 10.1016/j.resourpol.2021.102045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721000623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Stoyu Ivanov, 2013. "The influence of ETFs on the price discovery of gold, silver and oil," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(3), pages 453-462, July.
    3. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    4. Ole Emmrich & Francis Joseph McGroarty, 2013. "Should gold be included in institutional investment portfolios?," Applied Financial Economics, Taylor & Francis Journals, vol. 23(19), pages 1553-1565, October.
    5. Solt, Michael E & Swanson, Paul J, 1981. "On the Efficiency of the Markets for Gold and Silver," The Journal of Business, University of Chicago Press, vol. 54(3), pages 453-478, July.
    6. Paul, Manas & Bhanja, Niyati & Dar, Arif Billah, 2019. "Gold, gold mining stocks and equities- partial wavelet coherence evidence from developed countries," Resources Policy, Elsevier, vol. 62(C), pages 378-384.
    7. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    8. Søren Johansen, 2005. "Interpretation of Cointegrating Coefficients in the Cointegrated Vector Autoregressive Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(1), pages 93-104, February.
    9. Bierens, Herman J. & Martins, Luis F., 2010. "Time-Varying Cointegration," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1453-1490, October.
    10. Dar, Arif Billah & Bhanja, Niyati & Paul, Manas, 2019. "Do gold mining stocks behave like gold or equities? Evidence from the UK and the US," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 369-384.
    11. Gil-Alana, Luis A. & Yaya, OlaOluwa S. & Awe, Olushina O., 2017. "Time series analysis of co-movements in the prices of gold and oil: Fractional cointegration approach," Resources Policy, Elsevier, vol. 53(C), pages 117-124.
    12. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    13. Zhu, Huiming & Peng, Cheng & You, Wanhai, 2016. "Quantile behaviour of cointegration between silver and gold prices," Finance Research Letters, Elsevier, vol. 19(C), pages 119-125.
    14. Cuestas Juan Carlos & Gil-Alana Luis Alberiko, 2016. "Testing for long memory in the presence of non-linear deterministic trends with Chebyshev polynomials," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 57-74, February.
    15. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Moyang & Wong, Wing-Keung & Wisetsri, Worakamol & Mabrouk, Fatma & Muda, Iskandar & Li, Zeyun & Hassan, Marria, 2023. "Do oil, gold and metallic price volatilities prove gold as a safe haven during COVID-19 pandemic? Novel evidence from COVID-19 data," Resources Policy, Elsevier, vol. 80(C).
    2. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Adesina, Oluwaseun A. & Alobaloke, Kafayat A. & Vo, Xuan Vinh, 2022. "Time-variation between metal commodities and oil, and the impact of oil shocks: GARCH-MIDAS and DCC-MIDAS analyses," Resources Policy, Elsevier, vol. 79(C).
    3. Kumar, Suresh & Choudhary, Sangita & Singh, Gurcharan & Singhal, Shelly, 2021. "Crude oil, gold, natural gas, exchange rate and indian stock market: Evidence from the asymmetric nonlinear ARDL model," Resources Policy, Elsevier, vol. 73(C).
    4. Yaya, OlaOluwa S. & Lukman, Adewale F. & Vo, Xuan Vinh, 2022. "Persistence and volatility spillovers of bitcoin price to gold and silver prices," Resources Policy, Elsevier, vol. 79(C).
    5. Esperanza García-Gonzalo & Paulino José García-Nieto & Gregorio Fidalgo Valverde & Pedro Riesgo Fernández & Fernando Sánchez Lasheras & Sergio Luis Suárez Gómez, 2024. "Hybrid DE-Optimized GPR and NARX/SVR Models for Forecasting Gold Spot Prices: A Case Study of the Global Commodities Market," Mathematics, MDPI, vol. 12(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    2. Katarzyna Łasak & Carlos Velasco, 2015. "Fractional Cointegration Rank Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 241-254, April.
    3. Marcel Aloy & Gilles Truchis, 2016. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems and the Co-persistence Analysis of Stock Market Realized Volatilities," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 83-104, June.
    4. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    5. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    6. Abakah, Emmanuel Joel Aikins & Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko, 2021. "Economic policy uncertainty: Persistence and cross-country linkages," Research in International Business and Finance, Elsevier, vol. 58(C).
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. José Carlos Vides & Antonio A. Golpe & Jesús Iglesias, 2018. "How did the Sovereign debt crisis affect the Euro financial integration? A fractional cointegration approach," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(4), pages 685-706, November.
    9. Galán-Gutiérrez, Juan Antonio & Labeaga, José M. & Martín-García, Rodrigo, 2023. "Cointegration between high base metals prices and backwardation: Getting ready for the metals super-cycle," Resources Policy, Elsevier, vol. 81(C).
    10. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    11. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    12. Bilgin, Mehmet Huseyin & Gogolin, Fabian & Lau, Marco Chi Keung & Vigne, Samuel A., 2018. "Time-variation in the relationship between white precious metals and inflation: A cross-country analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 55-70.
    13. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    14. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    15. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    16. de Truchis, Gilles & Keddad, Benjamin, 2013. "Southeast Asian monetary integration: New evidences from fractional cointegration of real exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 394-412.
    17. Bampinas, Georgios & Panagiotidis, Theodore, 2015. "Are gold and silver a hedge against inflation? A two century perspective," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 267-276.
    18. Miller, Stephen M. & Martins, Luis Filipe & Gupta, Rangan, 2019. "A Time-Varying Approach Of The Us Welfare Cost Of Inflation," Macroeconomic Dynamics, Cambridge University Press, vol. 23(2), pages 775-797, March.
    19. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    20. Federico Carlini & Paolo Santucci de Magistris, 2019. "On the Identification of Fractionally Cointegrated VAR Models With the Condition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 134-146, January.

    More about this item

    Keywords

    Fractional cointegration; FCVAR; Gold; Silver; Mean reversion; Market fear gauges;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:72:y:2021:i:c:s0301420721000623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.