IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v60y2019icp288-299.html
   My bibliography  Save this article

Real option valuation of an Indian iron ore deposit through system dynamics model

Author

Listed:
  • Hazra, Tanmoy
  • Samanta, Biswajit
  • Dey, Kaushik

Abstract

The values of the mine planning parameters are changed dynamically over the life of mine. These values are not exactly known at the time of preparation of long-term mine plan and valuation of the mine. Hence, future values of these parameters are to be forecasted which results in the uncertainties of parameter estimation. Uncertainties in parameter set thus become a grave concern to a mine planner. The conventional deterministic NPV method fails to provide the desired solution in many situations as it captures neither the uncertainties nor the dynamic nature of the parameters. Realizing the above facts, few researchers approached the problem using stochastic NPV method of evaluation. They mainly considered price and metal uncertainties in the development of stochastic evaluation models. Real Option Valuation (ROV) is a much more pragmatic approach to solve this problem. By exercising different options such as continue, deferral, expand and shutdown optimally, the ROV approach adds more value to a project. In addition, when the ROV is integrated with System Dynamics Model (SDM) for simulation of various stochastic planning parameters, it strengthens the method of project valuation. In the present study, metal price, capital and operating costs, and other relevant planning parameters are simulated in SDM platform along with ore reserve by conditional simulations for evaluation of an iron ore project. The study results indicate that the ROV method yields 10% higher NPV than the NPV obtained in the stochastic NPV method for this specific case study mine.

Suggested Citation

  • Hazra, Tanmoy & Samanta, Biswajit & Dey, Kaushik, 2019. "Real option valuation of an Indian iron ore deposit through system dynamics model," Resources Policy, Elsevier, vol. 60(C), pages 288-299.
  • Handle: RePEc:eee:jrpoli:v:60:y:2019:i:c:p:288-299
    DOI: 10.1016/j.resourpol.2019.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718306111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2019.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Kong, Rui & Xue, Fangfang & Wang, Jing & Zhai, Haiyan & Zhao, Lina, 2017. "Research on Mineral Resources and Environment of Salt Lakes in Qinghai Province based on System Dynamics Theory," Resources Policy, Elsevier, vol. 52(C), pages 19-28.
    3. Moyen, Nathalie & Slade, Margaret & Uppal, Raman, 1996. "Valuing risk and flexibility : A comparison of methods," Resources Policy, Elsevier, vol. 22(1-2), pages 63-74.
    4. Bardia Kamrad & Ricardo Ernst, 2001. "An Economic Model for Evaluating Mining and Manufacturing Ventures with Output Yield Uncertainty," Operations Research, INFORMS, vol. 49(5), pages 690-699, October.
    5. Kelly, Simone, 1998. "A Binomial Lattice Approach for Valuing a Mining Property IPO," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 693-709.
    6. Alberto Moel, 2002. "When Are Real Options Exercised? An Empirical Study of Mine Closings," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 35-64, March.
    7. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    8. Slade, Margaret E., 2001. "Valuing Managerial Flexibility: An Application of Real-Option Theory to Mining Investments," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 193-233, March.
    9. Inthavongsa, Inthanongsone & Drebenstedt, Carsten & Bongaerts, Jan & Sontamino, Phongpat, 2016. "Real options decision framework: Strategic operating policies for open pit mine planning," Resources Policy, Elsevier, vol. 47(C), pages 142-153.
    10. Alishahi, E. & Moghaddam, M. Parsa & Sheikh-El-Eslami, M.K., 2012. "A system dynamics approach for investigating impacts of incentive mechanisms on wind power investment," Renewable Energy, Elsevier, vol. 37(1), pages 310-317.
    11. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    12. Bernadette O'Regan & Richard Moles, 2001. "A System Dynamics Model of Mining Industry Investment Decisions within the Context of Environmental Policy," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(2), pages 245-262.
    13. Assili, Mohsen & Javidi D.B., M. Hossein & Ghazi, Reza, 2008. "An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment," Energy Policy, Elsevier, vol. 36(10), pages 3703-3713, October.
    14. Quigg, Laura, 1993. "Empirical Testing of Real Option-Pricing Models," Journal of Finance, American Finance Association, vol. 48(2), pages 621-640, June.
    15. Senge, Peter M., 1980. "A system dynamics approach to investment-function formulation and testing," Socio-Economic Planning Sciences, Elsevier, vol. 14(6), pages 269-280.
    16. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    17. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    18. Hassett, Kevin A. & Metcalf, Gilbert E., 1993. "Energy conservation investment : Do consumers discount the future correctly?," Energy Policy, Elsevier, vol. 21(6), pages 710-716, June.
    19. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    20. Luke Reedman & Paul Graham & Peter Coombes, 2006. "Using a Real‐Options Approach to Model Technology Adoption Under Carbon Price Uncertainty: An Application to the Australian Electricity Generation Sector," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 64-73, September.
    21. James L. Paddock & Daniel R. Siegel & James L. Smith, 1988. "Option Valuation of Claims on Real Assets: The Case of Offshore Petroleum Leases," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(3), pages 479-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dou, Shi-quan & Liu, Jiang-yi & Xiao, Jian-zhong & Pan, Wen, 2020. "Economic feasibility valuing of deep mineral resources based on risk analysis: Songtao manganese ore - China case study," Resources Policy, Elsevier, vol. 66(C).
    2. Chuan-Chuan Ko & Chien-Yu Liu & Zan-Yu Chen & Jing Zhou, 2019. "Sustainable Development Economic Strategy Model for Reducing Carbon Emission by Using Real Options Approach," Sustainability, MDPI, vol. 11(19), pages 1-14, October.
    3. Zhang, Yan & Wang, Si-Xia & Yao, Jian-Ting & Tong, Rui-Peng, 2023. "The impact of behavior safety management system on coal mine work safety: A system dynamics model of quadripartite evolutionary game," Resources Policy, Elsevier, vol. 82(C).
    4. Yıldız, Taşkın Deniz, 2022. "Considering the recent increase in license fees in Turkey, how can the negative effect of the fees on the mining operating costs be reduced?," Resources Policy, Elsevier, vol. 77(C).
    5. Yıldız, Taşkın Deniz, 2022. "Are the compensations given to mining enterprises due to the overlapping with other investments in Turkey enough? Expectations of compensation for profit deprivation," Resources Policy, Elsevier, vol. 75(C).
    6. Mohammadi, Mir Ahmad & Sayadi, Ahmad Reza & Khoshfarman, Mahsa & Husseinzadeh Kashan, Ali, 2022. "A systems dynamics simulation model of a steel supply chain-case study," Resources Policy, Elsevier, vol. 77(C).
    7. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2021. "System dynamics approach in determining coal utilization scenario in Indonesia," Resources Policy, Elsevier, vol. 73(C).
    8. Yang, Wei & Fang, Nan & Wang, Yaping & Long, Tao & Deng, Sha & Xue, Mengge & Deng, Bo, 2022. "Value evaluation of mining right based on fuzzy real options," Resources Policy, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrakopoulos, Roussos G. & Abdel Sabour, Sabry A., 2007. "Evaluating mine plans under uncertainty: Can the real options make a difference?," Resources Policy, Elsevier, vol. 32(3), pages 116-125, September.
    2. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    3. Sebastian Maier, 2021. "Re-evaluating natural resource investments under uncertainty: An alternative to limited traditional approaches," Annals of Operations Research, Springer, vol. 299(1), pages 907-937, April.
    4. Kuangyuan Zhang & Richard Olawoyin & Antonio Nieto & Andrew N. Kleit, 2018. "Risk of commodity price, production cost and time to build in resource economics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2521-2544, December.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Miranda, Oscar & Brandão, Luiz E. & Lazo Lazo, Juan, 2017. "A dynamic model for valuing flexible mining exploration projects under uncertainty," Resources Policy, Elsevier, vol. 52(C), pages 393-404.
    7. Simone Kelly, 2017. "The market premium for the option to close: evidence from Australian gold mining firms," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(2), pages 511-531, June.
    8. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    9. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    10. Zhu, Lei & Zhang, ZhongXiang & Fan, Ying, 2015. "Overseas oil investment projects under uncertainty: How to make informed decisions?," Journal of Policy Modeling, Elsevier, vol. 37(5), pages 742-762.
    11. Inthavongsa, Inthanongsone & Drebenstedt, Carsten & Bongaerts, Jan & Sontamino, Phongpat, 2016. "Real options decision framework: Strategic operating policies for open pit mine planning," Resources Policy, Elsevier, vol. 47(C), pages 142-153.
    12. Lambrecht, Bart M., 2017. "Real options in finance," Journal of Banking & Finance, Elsevier, vol. 81(C), pages 166-171.
    13. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    14. Pringles, Rolando & Olsina, Fernando & Garcés, Francisco, 2015. "Real option valuation of power transmission investments by stochastic simulation," Energy Economics, Elsevier, vol. 47(C), pages 215-226.
    15. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    16. Andr�s Garc�a Mirantes & Javier Población & Gregorio Serna, 2012. "Analyzing the dynamics of the refining margin: implications for valuation and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1839-1855, December.
    17. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    18. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.
    19. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    20. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:60:y:2019:i:c:p:288-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.