IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v59y2018icp139-147.html
   My bibliography  Save this article

Material and value flows of iron in Chinese international trade from 2010 to 2016

Author

Listed:
  • Qiangfeng, Li
  • Weiqiong, Zhong
  • Gaoshang, Wang
  • Jinhua, Cheng
  • Tao, Dai
  • Bojie, Wen
  • Liang, Liang
  • Qindong, Yang

Abstract

The study of flows of iron-containing commodities through China can reveal international trade pathways and the processes involved in global iron material flows. This study presents an iron material flow analysis that incorporates all iron-containing commodities, including IEPs (iron-containing end products). We analyzed material and value flows of iron-containing commodities between China and other countries worldwide. The results are as follows. (1) During the period from 2010 to 2016, the total amounts of iron materials imported to and exported from China increased by 224 million tons and 81 million tons, respectively. (2) 90% of the iron material imported by China consisted of iron ore and was imported from Australia and Brazil. More than 98% of the iron material exported from China consisted of rolled steel and IEPs (mainly engineering machinery and land vehicles), and were exported to Japan, South Korea, and the United States. In 2014, the export volume of rolled steel exceeded that of IEPs. (3) China had an international iron trade surplus, which increased from 31 billion USD in 2010 to 272 billion USD in 2016 at an average annual growth rate of 130%. According to this, some suggestions on how to optimize the resource allocation in the industrial chain of iron-containing products and the international trade policy of iron-containing products were put forward.

Suggested Citation

  • Qiangfeng, Li & Weiqiong, Zhong & Gaoshang, Wang & Jinhua, Cheng & Tao, Dai & Bojie, Wen & Liang, Liang & Qindong, Yang, 2018. "Material and value flows of iron in Chinese international trade from 2010 to 2016," Resources Policy, Elsevier, vol. 59(C), pages 139-147.
  • Handle: RePEc:eee:jrpoli:v:59:y:2018:i:c:p:139-147
    DOI: 10.1016/j.resourpol.2018.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718300461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2018.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Laner & Julia Feketitsch & Helmut Rechberger & Johann Fellner, 2016. "A Novel Approach to Characterize Data Uncertainty in Material Flow Analysis and its Application to Plastics Flows in Austria," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1050-1063, October.
    2. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
    3. Yin, Xiang & Chen, Wenying, 2013. "Trends and development of steel demand in China: A bottom–up analysis," Resources Policy, Elsevier, vol. 38(4), pages 407-415.
    4. Chen, Wenhui & Lei, Yalin & Jiang, Yong, 2016. "Influencing factors analysis of China’s iron import price: Based on quantile regression model," Resources Policy, Elsevier, vol. 48(C), pages 68-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    2. Li, Wenlong & Huang, Shupei & Qi, Yabin & An, Haizhong, 2022. "RDEU hawk-dove game analysis of the China-Australia iron ore trade conflict," Resources Policy, Elsevier, vol. 77(C).
    3. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Li, Xin & Lin, Jing & Zhang, Di & Xiong, Zehui & He, Xiaoqiong & Yuan, Miao & Wang, Minxi, 2020. "Material flow analysis of titanium dioxide and sustainable policy suggestion in China," Resources Policy, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Yueru & Geng, Yong & Chen, Zhujun & Xiao, Shijiang & Gao, Ziyan, 2024. "Ensuring the sustainable supply of semiconductor material: A case of germanium in China," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    3. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    4. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    5. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    6. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    7. Dhiya Durani Sofian Azizi & Marlia M. Hanafiah & Kok Sin Woon, 2023. "Material Flow Analysis in WEEE Management for Circular Economy: A Content Review on Applications, Limitations, and Future Outlook," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    8. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    9. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    10. Wu, Congcong & Gao, Xiangyun & Xi, Xian & Zhao, Yiran & Li, Yu, 2021. "The stability optimization of the international lithium trade," Resources Policy, Elsevier, vol. 74(C).
    11. Ge, Zewen & Geng, Yong & Wei, Wendong & Zhong, Chen, 2022. "Assessing samarium resource efficiency in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 76(C).
    12. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    13. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    14. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    15. Yang, Ping & Gao, Xiangyun & Zhao, Yiran & Jia, Nanfei & Dong, Xiaojuan, 2021. "Lithium resource allocation optimization of the lithium trading network based on material flow," Resources Policy, Elsevier, vol. 74(C).
    16. Zhongxin Ni & Xing Lu & Wenjun Xue, 2021. "Does the belt and road initiative resolve the steel overcapacity in China? Evidence from a dynamic model averaging approach," Empirical Economics, Springer, vol. 61(1), pages 279-307, July.
    17. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    19. Liu, Yanxin & Li, Huajiao & Guan, Jianhe & Liu, Xueyong & Guan, Qing & Sun, Qingru, 2019. "Influence of different factors on prices of upstream, middle and downstream products in China's whole steel industry chain: Based on Adaptive Neural Fuzzy Inference System," Resources Policy, Elsevier, vol. 60(C), pages 134-142.
    20. Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:59:y:2018:i:c:p:139-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.