IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v13y2004i1d10.1007_s10260-004-0086-2.html
   My bibliography  Save this article

A non linear wavelet based estimator for long memory processes

Author

Listed:
  • Livia Giovanni

    (Universitá del Molise)

  • Maurizio Naldi

    (Universitá di Roma “Tor Vergata”)

Abstract

. Two wavelet based estimators are considered in this paper for the two parameters that characterize long range dependence processes. The first one is linear and is based on the statistical properties of the coefficients of a discrete wavelet transform of long range dependence processes. The estimator consists in measuring the slope (related to the long memory parameter) and the intercept (related to the variance of the process) of a linear regression after a discrete wavelet transform is performed (Veitch and Abry, 1999). In this paper its properties are reviewed, and analytic evidence is produced that the linear estimator is applicable only when the second parameter is unknown. To overcome this limitation a non linear wavelet based estimator - that takes into account that the intercept depends on the long memory parameter - is proposed here for the cases in which the second parameter is known or the only parameter of interest is the long memory parameter. Under the same hypothesis assumed for the linear estimator, the non linear estimator is shown to be asymptotically more efficient for the long memory parameter. Numerical simulations show that, even for small data sets, the bias is very small and the variance close to optimal. An application to ATM based Internet traffic is presented.

Suggested Citation

  • Livia Giovanni & Maurizio Naldi, 2004. "A non linear wavelet based estimator for long memory processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(1), pages 27-41, April.
  • Handle: RePEc:spr:stmapp:v:13:y:2004:i:1:d:10.1007_s10260-004-0086-2
    DOI: 10.1007/s10260-004-0086-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-004-0086-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-004-0086-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mastroeni, Loretta & Vellucci, Pierluigi & Naldi, Maurizio, 2018. "Co-existence of stochastic and chaotic behaviour in the copper price time series," Resources Policy, Elsevier, vol. 58(C), pages 295-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:13:y:2004:i:1:d:10.1007_s10260-004-0086-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.