IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v75y2019icp70-81.html
   My bibliography  Save this article

Land use and public health impact assessment in a supply chain network design problem: A case study

Author

Listed:
  • Olapiriyakul, Sun
  • Nguyen, Thi T.

Abstract

The establishment of freight transport facilities and logistics operations in urban areas tends to create substantial public health and land use burdens, due to the high concentration of people and the limited availability of land. This paper proposes a tri-objective supply chain network design model, to address the economic, public health, and land use impacts, associated with an urban freight transport network. The capability of the proposed model and methodologies are illustrated using a case study of the freight transport network in Can Tho city, which involves the selection of raw material sourcing and product distribution locations across rural and urban areas. The metric of disability-adjusted life years (DALYs) is used to represent the overall public health impact of the transport emissions exposure in people living within 5000 m of the transportation routes. Geographical information system (GIS) tools are used to explore the population density distribution across transport network areas and to estimate the number of exposed people. The land use impact due to the presence of warehouses and plants is taken into account, using the life cycle impact assessment (LCIA) method. The obtained design solutions under single- and multi-objective optimization are presented. The trade-offs among the contradictory objectives are also analyzed to obtain various alternative solutions, allowing geographers to understand how to design environmentally benign, urban freight transport networks, based on sustainable development preferences.

Suggested Citation

  • Olapiriyakul, Sun & Nguyen, Thi T., 2019. "Land use and public health impact assessment in a supply chain network design problem: A case study," Journal of Transport Geography, Elsevier, vol. 75(C), pages 70-81.
  • Handle: RePEc:eee:jotrge:v:75:y:2019:i:c:p:70-81
    DOI: 10.1016/j.jtrangeo.2019.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318304927
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    2. Mallidis, Ioannis & Dekker, Rommert & Vlachos, Dimitrios, 2012. "The impact of greening on supply chain design and cost: a case for a developing region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 118-128.
    3. Naoki Ando & Eiichi Taniguchi, 2006. "Travel Time Reliability in Vehicle Routing and Scheduling with Time Windows," Networks and Spatial Economics, Springer, vol. 6(3), pages 293-311, September.
    4. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    5. Cardoso, Sónia R. & Paula Barbosa-Póvoa, Ana & Relvas, Susana & Novais, Augusto Q., 2015. "Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty," Omega, Elsevier, vol. 56(C), pages 53-73.
    6. Jean-Yves Courtonne & Pierre-Yves Longaretti & Julien Alapetite & Denis Dupré, 2016. "Environmental Pressures Embodied in the French Cereals Supply Chain," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 423-434, June.
    7. Karimi Dehnavi, Hadi & Rezvan, Mohammad Taghi & Shirmohammadli, Abdolmatin & Vallée, Dirk, 2013. "A solution for urban road selection and construction problem using simulation and goal programming—Case study of the city of Isfahan," Transport Policy, Elsevier, vol. 29(C), pages 46-53.
    8. Accorsi, Riccardo & Manzini, Riccardo & Pini, Chiara & Penazzi, Stefano, 2015. "On the design of closed-loop networks for product life cycle management: Economic, environmental and geography considerations," Journal of Transport Geography, Elsevier, vol. 48(C), pages 121-134.
    9. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    10. Jose Moura & Angel Ibeas & Luigi dell’Olio, 2010. "Optimization–Simulation Model for Planning Supply Transport to Large Infrastructure Public Works Located in Congested Urban Areas," Networks and Spatial Economics, Springer, vol. 10(4), pages 487-507, December.
    11. Jianqiang Cui & Jago Dodson & Peter V. Hall, 2015. "Planning for Urban Freight Transport: An Overview," Transport Reviews, Taylor & Francis Journals, vol. 35(5), pages 583-598, September.
    12. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    13. Lindholm, Maria & Behrends, Sönke, 2012. "Challenges in urban freight transport planning – a review in the Baltic Sea Region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 129-136.
    14. Taesung Hwang & Yanfeng Ouyang, 2015. "Urban Freight Truck Routing under Stochastic Congestion and Emission Considerations," Sustainability, MDPI, vol. 7(6), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    2. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    3. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    4. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    5. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    6. Mustapha Anwar Brahami & Mohammed Dahane & Mehdi Souier & M’hammed Sahnoun, 2022. "Sustainable capacitated facility location/network design problem: a Non-dominated Sorting Genetic Algorithm based multiobjective approach," Annals of Operations Research, Springer, vol. 311(2), pages 821-852, April.
    7. Chia-Nan Wang & Nhat-Luong Nhieu & Yu-Chi Chung & Huynh-Tram Pham, 2021. "Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window," Mathematics, MDPI, vol. 9(4), pages 1-25, February.
    8. Mallidis, Ioannis & Vlachos, Dimitrios & Iakovou, Eleftherios & Dekker, Rommert, 2014. "Design and planning for green global supply chains under periodic review replenishment policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 210-235.
    9. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    10. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    11. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    12. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    13. van der Plas, C. & Tervonen, T. & Dekker, R., 2012. "Evaluation of scalarization methods and NSGA-II/SPEA2 genetic algorithms for multi-objective optimization of green supply chain design," Econometric Institute Research Papers EI2012-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    15. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    16. Natalia Drop & Daria Garlińska, 2021. "Evaluation of Intelligent Transport Systems Used in Urban Agglomerations and Intercity Roads by Professional Truck Drivers," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    17. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    18. Farnaz Barzinpour & Peyman Taki, 2018. "A dual-channel network design model in a green supply chain considering pricing and transportation mode choice," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1465-1483, October.
    19. Kim, Yun Geon & Chung, Byung Do, 2022. "Closed-loop supply chain network design considering reshoring drivers," Omega, Elsevier, vol. 109(C).
    20. Evangelos Gkanatsas & Harold Krikke, 2020. "Towards a Pro-Silience Framework: A Literature Review on Quantitative Modelling of Resilient 3PL Supply Chain Network Designs," Sustainability, MDPI, vol. 12(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:75:y:2019:i:c:p:70-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.