IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v58y2017icp196-208.html
   My bibliography  Save this article

Travel demand corridors: Modelling approach and relevance in the planning process

Author

Listed:
  • Bahbouh, Kinan
  • Wagner, James R.
  • Morency, Catherine
  • Berdier, Chantal

Abstract

In an ideal world, transportation networks and services would be adapted to the specific travel needs of each individual and would perfectly fit the corresponding desire lines (direct lines between origin and destination points). However, in practice, networks cannot be designed to accommodate each individual trip. Still, it is possible to optimize transportation systems from a collective demand point of view. To move from an individual to a collective scale, individual demands need to be encapsulated into demand corridors.

Suggested Citation

  • Bahbouh, Kinan & Wagner, James R. & Morency, Catherine & Berdier, Chantal, 2017. "Travel demand corridors: Modelling approach and relevance in the planning process," Journal of Transport Geography, Elsevier, vol. 58(C), pages 196-208.
  • Handle: RePEc:eee:jotrge:v:58:y:2017:i:c:p:196-208
    DOI: 10.1016/j.jtrangeo.2016.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316307426
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2016.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    2. Jara-Díaz, Sergio & Tirachini, Alejandro & Cortés, Cristián E., 2008. "Modeling public transport corridors with aggregate and disaggregate demand," Journal of Transport Geography, Elsevier, vol. 16(6), pages 430-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongcheng & Wong, Yiik Diew & Du, Bo & Lum, Kit Meng & Goh, Kelvin, 2024. "Sociospatial inclusiveness of streets through the lens of urban pedestrian mobilities: Go-along interviews with less mobile pedestrians in Singapore," Journal of Transport Geography, Elsevier, vol. 115(C).
    2. Weichuan Yin & Yingqun Zhang, 2020. "Identification Method for Optimal Urban Bus Corridor Location," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    3. Raquel Pérez‐delHoyo & Higinio Mora & José Manuel Nolasco‐Vidal & Rubén Abad‐Ortiz & Rafael A. Mollá‐Sirvent, 2021. "Addressing new challenges in smart urban planning using Information and Communication Technologies," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(3), pages 342-354, May.
    4. Loor, Ignacio & Evans, James, 2021. "Understanding the value and vulnerability of informal infrastructures: Footpaths in Quito," Journal of Transport Geography, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shaopei & Claramunt, Christophe & Ray, Cyril, 2014. "A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network," Journal of Transport Geography, Elsevier, vol. 36(C), pages 12-23.
    2. Deng, Taotao & Ma, Mulan & Nelson, John D., 2016. "Measuring the impacts of Bus Rapid Transit on residential property values: The Beijing case," Research in Transportation Economics, Elsevier, vol. 60(C), pages 54-61.
    3. José Vassallo & Floridea Ciommo & Álvaro García, 2012. "Intermodal exchange stations in the city of Madrid," Transportation, Springer, vol. 39(5), pages 975-995, September.
    4. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    5. Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
    6. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    7. Gupta, Akshay & Bivina, G.R. & Parida, Manoranjan, 2022. "Does neighborhood design matter for walk access to metro stations? An integrated SEM-Hybrid discrete mode choice approach," Transport Policy, Elsevier, vol. 121(C), pages 61-77.
    8. Liang Gong & Yinzhen Li & Dejie Xu, 2019. "Combinational Scheduling Model Considering Multiple Vehicle Sizes," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    9. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    10. John Zacharias & Qi Zhao, 2018. "Local environmental factors in walking distance at metro stations," Public Transport, Springer, vol. 10(1), pages 91-106, May.
    11. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    12. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. O'Connor, David & Caulfield, Brian, 2018. "Level of service and the transit neighbourhood - Observations from Dublin city and suburbs," Research in Transportation Economics, Elsevier, vol. 69(C), pages 59-67.
    14. Liao, Yuan, 2021. "Ride-sourcing compared to its public-transit alternative using big trip data," Journal of Transport Geography, Elsevier, vol. 95(C).
    15. Dan Wan & Camille Kamga & Wei Hao & Aaron Sugiura & Eric B. Beaton, 2016. "Customer satisfaction with bus rapid transit: a study of New York City select bus service applying structural equation modeling," Public Transport, Springer, vol. 8(3), pages 497-520, December.
    16. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    17. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    18. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    19. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    20. Abenoza, Roberto F. & Liu, Chengxi & Cats, Oded & Susilo, Yusak O., 2019. "What is the role of weather, built-environment and accessibility geographical characteristics in influencing travelers’ experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 34-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:58:y:2017:i:c:p:196-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.