IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v114y2024ics0966692323002168.html
   My bibliography  Save this article

Spatiotemporal influence of built environment on intercity commuting trips considering nonlinear effects

Author

Listed:
  • Li, Yigang
  • Yao, Enjian
  • Liu, Shasha
  • Yang, Yang

Abstract

Understanding the attraction and generation of intercity commuting is important in estimating the demand for intercity travel, supporting improving transportation services, and coordinating intercity development. Although numerous studies have investigated the characteristics of intercity commuting, the existing literature on the relationship between intercity commuting and the built environment remains limited. In this study, we propose a feasible quantitative approach to quantitatively analyze the impact of the built environment on intercity commuting by utilizing multi-source data. An empirical study of commuting from Tianjin to Beijing is conducted. The results show that the model considering both spatial heterogeneity and nonlinearity has the highest prediction accuracy compared to traditional models. Moreover, the employment density has the greatest impact on the attraction of intercity commuting, while primary and secondary education services significantly contribute to the generation of intercity commuting. Our proposed modeling, findings, and discussions provide a foundation for policymakers and contribute to regional planning.

Suggested Citation

  • Li, Yigang & Yao, Enjian & Liu, Shasha & Yang, Yang, 2024. "Spatiotemporal influence of built environment on intercity commuting trips considering nonlinear effects," Journal of Transport Geography, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:jotrge:v:114:y:2024:i:c:s0966692323002168
    DOI: 10.1016/j.jtrangeo.2023.103744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323002168
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allard, Ryan F. & Moura, Filipe, 2018. "Effect of transport transfer quality on intercity passenger mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 89-107.
    2. Losada-Rojas, Lisa Lorena & Gkartzonikas, Christos & Pyrialakou, V. Dimitra & Gkritza, Konstantina, 2019. "Exploring intercity passengers’ attitudes and loyalty to intercity passenger rail: Evidence from an on-board survey," Transport Policy, Elsevier, vol. 73(C), pages 71-83.
    3. Xiaoquan Wang & Weifeng Wang & Chaoying Yin, 2023. "Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    4. Nathaniel Baum-Snow & Loren Brandt & J. Vernon Henderson & Matthew A. Turner & Qinghua Zhang, 2017. "Roads, Railroads, and Decentralization of Chinese Cities," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 435-448, July.
    5. Moritz Kersting & Eike Matthies & Jörg Lahner & Jan Schlüter, 2021. "A socioeconomic analysis of commuting professionals," Transportation, Springer, vol. 48(5), pages 2127-2158, October.
    6. Mouratidis, Kostas, 2019. "Built environment and leisure satisfaction: The role of commute time, social interaction, and active travel," Journal of Transport Geography, Elsevier, vol. 80(C).
    7. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    8. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    9. Daniel F Heuermann & Johannes F Schmieder, 2019. "The effect of infrastructure on worker mobility: evidence from high-speed rail expansion in Germany," Journal of Economic Geography, Oxford University Press, vol. 19(2), pages 335-372.
    10. Dong, Tao & Jia, Ning & Ma, Shoufeng & Xu, Shu-Xian & Ping Ong, Ghim & Liu, Peng & Huang, Hai-Jun, 2022. "Impacts of intercity commuting on travel characteristics and urban performances in a two-city system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Edward Glaeser & Wei Huang & Yueran Ma & Andrei Shleifer, 2017. "A Real Estate Boom with Chinese Characteristics," Journal of Economic Perspectives, American Economic Association, vol. 31(1), pages 93-116, Winter.
    12. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    13. Vincent-Geslin, Stephanie & Ravalet, Emmanuel, 2016. "Determinants of extreme commuting. Evidence from Brussels, Geneva and Lyon," Journal of Transport Geography, Elsevier, vol. 54(C), pages 240-247.
    14. Zhao, Pengjun & Cao, Yushu, 2020. "Commuting inequity and its determinants in Shanghai: New findings from big-data analytics," Transport Policy, Elsevier, vol. 92(C), pages 20-37.
    15. Zhu, Pengyu & Zhao, Songnian & Jiang, Yanpeng, 2022. "Residential segregation, built environment and commuting outcomes: Experience from contemporary China," Transport Policy, Elsevier, vol. 116(C), pages 269-277.
    16. Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
    17. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Schleith, Daniel & Widener, Michael & Kim, Changjoo, 2016. "An examination of the jobs-housing balance of different categories of workers across 26 metropolitan regions," Journal of Transport Geography, Elsevier, vol. 57(C), pages 145-160.
    19. Sandow, Erika & Westin, Kerstin, 2010. "The persevering commuter - Duration of long-distance commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 433-445, July.
    20. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    21. Bushell, James & Merkert, Rico & Beck, Matthew J., 2022. "Consumer preferences for operator collaboration in intra- and intercity transport ecosystems: Institutionalising platforms to facilitate MaaS 2.0," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 160-178.
    22. Mitra, Suman K. & Saphores, Jean-Daniel M., 2019. "Why do they live so far from work? Determinants of long-distance commuting in California," Journal of Transport Geography, Elsevier, vol. 80(C).
    23. Kim, Kyusik & Horner, Mark W., 2021. "Examining the impacts of the Great Recession on the commuting dynamics and jobs-housing balance of public and private sector workers," Journal of Transport Geography, Elsevier, vol. 90(C).
    24. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    25. Jin, Eunae & Kim, Danya & Jin, Jangik, 2022. "Commuting time and perceived stress: Evidence from the intra- and inter-city commuting of young workers in Korea," Journal of Transport Geography, Elsevier, vol. 104(C).
    26. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    27. Cervero, Robert & Denman, Steve & Jin, Ying, 2019. "Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns," Transport Policy, Elsevier, vol. 74(C), pages 153-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    2. Islam, Md Rabiul & Saphores, Jean-Daniel M., 2022. "An L.A. story: The impact of housing costs on commuting," Journal of Transport Geography, Elsevier, vol. 98(C).
    3. Giménez-Nadal, José Ignacio & Molina, José Alberto & Velilla, Jorge, 2021. "Two-way commuting: Asymmetries from time use surveys," Journal of Transport Geography, Elsevier, vol. 95(C).
    4. Caigang, Zhuang & Shaoying, Li & Zhangzhi, Tan & Feng, Gao & Zhifeng, Wu, 2022. "Nonlinear and threshold effects of traffic condition and built environment on dockless bike sharing at street level," Journal of Transport Geography, Elsevier, vol. 102(C).
    5. Tong, Zhaomin & An, Rui & Zhang, Ziyi & Liu, Yaolin & Luo, Minghai, 2022. "Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates," Journal of Transport Geography, Elsevier, vol. 104(C).
    6. Ling, Changlong & Niu, Xinyi & Yang, Jiawen & Zhou, Jiangping & Yang, Tianren, 2024. "Unravelling heterogeneity and dynamics of commuting efficiency: Industry-level insights into evolving efficiency gaps based on a disaggregated excess-commuting framework," Journal of Transport Geography, Elsevier, vol. 115(C).
    7. Lan, Xiujuan & Hu, Zheneng & Wen, Chuanhao, 2023. "Does the opening of high-speed rail enhance urban entrepreneurial activity? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    8. Baek, Jisun & Park, WooRam, 2022. "The impact of improved passenger transport system on manufacturing plant productivity," Regional Science and Urban Economics, Elsevier, vol. 96(C).
    9. Chen, Qifei & Wang, Meng, 2022. "Opening of high-speed rail and the consumer service industry: Evidence from China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 31-45.
    10. Giménez-Nadal, José Ignacio & Velilla, Jorge & Ortega-Lapiedra, Raquel, 2024. "Differences in commuting between employee and self-employed workers: The case of Latin America," Journal of Transport Geography, Elsevier, vol. 114(C).
    11. Giménez-Nadal, José Ignacio & Velilla, Jorge & Ortega, Raquel, 2022. "Revisiting excess commuting and self-employment: The case of Latin America," GLO Discussion Paper Series 1179, Global Labor Organization (GLO).
    12. Chang Liu & Wei Xiong, 2018. "China's Real Estate Market," NBER Working Papers 25297, National Bureau of Economic Research, Inc.
    13. Isabelle Wachter & Christian Holz-Rau, 2022. "Gender differences in work-related high mobility differentiated by partnership and parenthood status," Transportation, Springer, vol. 49(6), pages 1737-1764, December.
    14. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    15. Delclòs-Alió, Xavier & Miralles-Guasch, Carme, 2017. "Suburban travelers pressed for time: Exploring the temporal implications of metropolitan commuting in Barcelona," Journal of Transport Geography, Elsevier, vol. 65(C), pages 165-174.
    16. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    17. Li, Xiaolong & Wu, Zongfa & Zhao, Xingchen, 2020. "Economic effect and its disparity of high speed rail in China: A study of mechanism based on synthesis control method," Transport Policy, Elsevier, vol. 99(C), pages 262-274.
    18. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    19. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    20. Fangting Chi & Haoying Han, 2023. "The Impact of High-Speed Rail on Economic Development: A County-Level Analysis," Land, MDPI, vol. 12(4), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:114:y:2024:i:c:s0966692323002168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.