IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i3p899-905.html
   My bibliography  Save this article

A simple heuristic for computing non-stationary inventory policies based on function approximation

Author

Listed:
  • Kilic, Onur A.
  • Tarim, S. Armagan

Abstract

We consider a finite-horizon periodic-review inventory system with fixed replenishment costs that faces non-stationary demands. The structure of the optimal control policy for this system has long been known. However, finding optimal policy parameters requires solving a large-scale stochastic dynamic program. To circumvent this, we devise a recursion-free approximation for the cost function of the problem. This translates into an efficient and effective heuristic to compute policy parameters that significantly outperforms earlier heuristics. Our approach is easy-to-understand and easy-to-use as it follows by elementary methods of shortest paths and convex minimization.

Suggested Citation

  • Kilic, Onur A. & Tarim, S. Armagan, 2024. "A simple heuristic for computing non-stationary inventory policies based on function approximation," European Journal of Operational Research, Elsevier, vol. 316(3), pages 899-905.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:899-905
    DOI: 10.1016/j.ejor.2024.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724001243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awi Federgruen & Paul Zipkin, 1984. "An Efficient Algorithm for Computing Optimal ( s , S ) Policies," Operations Research, INFORMS, vol. 32(6), pages 1268-1285, December.
    2. Donald L. Iglehart, 1963. "Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem," Management Science, INFORMS, vol. 9(2), pages 259-267, January.
    3. B. D. Sivazlian, 1971. "Dimensional and Computational Analysis in Stationary (s, S) Inventory Problems with Gamma Distributed Demand," Management Science, INFORMS, vol. 17(6), pages 307-311, February.
    4. Srinivas Bollapragada & Thomas E. Morton, 1999. "A Simple Heuristic for Computing Nonstationary (s, S) Policies," Operations Research, INFORMS, vol. 47(4), pages 576-584, August.
    5. Stephen C. Graves & Sean P. Willems, 2008. "Strategic Inventory Placement in Supply Chains: Nonstationary Demand," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 278-287, March.
    6. Blyth C. Archibald & Edward A. Silver, 1978. "(s, S) Policies Under Continuous Review and Discrete Compound Poisson Demand," Management Science, INFORMS, vol. 24(9), pages 899-909, May.
    7. Arthur F. Veinott, Jr. & Harvey M. Wagner, 1965. "Computing Optimal (s, S) Inventory Policies," Management Science, INFORMS, vol. 11(5), pages 525-552, March.
    8. Fang Liu & Jing-Sheng Song, 2012. "Good and Bad News About the ( S , T ) Policy," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 42-49, January.
    9. James R. Freeland & Evan L. Porteus, 1980. "Evaluating the Effectiveness of a New Method for Computing Approximately Optimal ( s , S ) Inventory Policies," Operations Research, INFORMS, vol. 28(2), pages 353-364, April.
    10. Evan L. Porteus, 1979. "Technical Note—An Adjustment to the Norman-White Approach to Approximating Dynamic Programs," Operations Research, INFORMS, vol. 27(6), pages 1203-1208, December.
    11. John J. Neale & Sean P. Willems, 2009. "Managing Inventory in Supply Chains with Nonstationary Demand," Interfaces, INFORMS, vol. 39(5), pages 388-399, October.
    12. Harvey M. Wagner & Michael O'Hagan & Bertil Lundh, 1965. "An Empirical Study of Exactly and Approximately Optimal Inventory Policies," Management Science, INFORMS, vol. 11(7), pages 690-723, May.
    13. Abbas A. Kurawarwala & Hirofumi Matsuo, 1996. "Forecasting and Inventory Management of Short Life-Cycle Products," Operations Research, INFORMS, vol. 44(1), pages 131-150, February.
    14. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    15. Yu-Sheng Zheng & A. Federgruen, 1991. "Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy," Operations Research, INFORMS, vol. 39(4), pages 654-665, August.
    16. Uday S. Rao, 2003. "Properties of the Periodic Review (R, T) Inventory Control Policy for Stationary, Stochastic Demand," Manufacturing & Service Operations Management, INFORMS, vol. 5(1), pages 37-53, February.
    17. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    18. Edward A. Silver, 1981. "Operations Research in Inventory Management: A Review and Critique," Operations Research, INFORMS, vol. 29(4), pages 628-645, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2011. "The cost of using stationary inventory policies when demand is non-stationary," Omega, Elsevier, vol. 39(4), pages 410-415, August.
    2. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    3. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    4. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    5. Lagodimos, A.G. & Christou, I.T. & Skouri, K., 2012. "Computing globally optimal (s,S,T) inventory policies," Omega, Elsevier, vol. 40(5), pages 660-671.
    6. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    7. Gah-Yi Ban, 2020. "Confidence Intervals for Data-Driven Inventory Policies with Demand Censoring," Operations Research, INFORMS, vol. 68(2), pages 309-326, March.
    8. Hao Yuan & Qi Luo & Cong Shi, 2021. "Marrying Stochastic Gradient Descent with Bandits: Learning Algorithms for Inventory Systems with Fixed Costs," Management Science, INFORMS, vol. 67(10), pages 6089-6115, October.
    9. B S Maddah & M Y Jaber & N E Abboud, 2004. "Periodic review (s, S) inventory model with permissible delay in payments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 147-159, February.
    10. Chen, Zhen & Rossi, Roberto, 2021. "A dynamic ordering policy for a stochastic inventory problem with cash constraints," Omega, Elsevier, vol. 102(C).
    11. Lee, Jun-Yeon & Ren, Louie, 2011. "Vendor-managed inventory in a global environment with exchange rate uncertainty," International Journal of Production Economics, Elsevier, vol. 130(2), pages 169-174, April.
    12. Xie, Xiaolan, 1998. "Stability analysis and optimization of an inventory system with bounded orders," European Journal of Operational Research, Elsevier, vol. 110(1), pages 126-149, October.
    13. Chan, Gin Hor & Song, Yuyue, 2003. "A dynamic analysis of the single-item periodic stochastic inventory system with order capacity," European Journal of Operational Research, Elsevier, vol. 146(3), pages 529-542, May.
    14. Awi Federgruen & Min Wang, 2015. "Inventory Models with Shelf-Age and Delay-Dependent Inventory Costs," Operations Research, INFORMS, vol. 63(3), pages 701-715, June.
    15. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    17. Dehaybe, Henri & Catanzaro, Daniele & Chevalier, Philippe, 2024. "Deep Reinforcement Learning for inventory optimization with non-stationary uncertain demand," European Journal of Operational Research, Elsevier, vol. 314(2), pages 433-445.
    18. Zied Babai, M. & Syntetos, Aris A. & Teunter, Ruud, 2010. "On the empirical performance of (T, s, S) heuristics," European Journal of Operational Research, Elsevier, vol. 202(2), pages 466-472, April.
    19. Chiang, Chi, 2013. "A note on periodic review inventory models with stochastic supplier’s visit intervals and fixed ordering cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 662-666.
    20. Guan, Yongpei & Liu, Tieming, 2010. "Stochastic lot-sizing problem with inventory-bounds and constant order-capacities," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1398-1409, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:899-905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.