IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v30y2002i5p367-379.html
   My bibliography  Save this article

The effect of the Bootstrap method on additive fixed data perturbation in statistical database

Author

Listed:
  • Du, Timon C.
  • Wang, Fu-Kwun
  • Ro, Jen-Chuan

Abstract

In the information age, more and more data are stored in databases. Some data are retrieved in a statistical format as a means of protection. A statistical database provides summarized statistics to users while usually sheltering individual information. However, it has been found that users can send legal queries and deduce unauthorized information by recomposing queried data. Fortunately, the data perturbation technique can be used to improve the security of a statistical database by inserting minor biases into the database. This study uses Bootstrap method to demonstrate the possibility of deducing detailed information from individual data in a statistical database based on small samples, and then goes on to search for an effective perturbation distribution to ensure data security.

Suggested Citation

  • Du, Timon C. & Wang, Fu-Kwun & Ro, Jen-Chuan, 2002. "The effect of the Bootstrap method on additive fixed data perturbation in statistical database," Omega, Elsevier, vol. 30(5), pages 367-379, October.
  • Handle: RePEc:eee:jomega:v:30:y:2002:i:5:p:367-379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(02)00055-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishnamurty Muralidhar & Rahul Parsa & Rathindra Sarathy, 1999. "A General Additive Data Perturbation Method for Database Security," Management Science, INFORMS, vol. 45(10), pages 1399-1415, October.
    2. Panda, S. K. & Nagabhushanam, A., 1995. "Fuzzy data distortion," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 553-562, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    2. Mehri, Ali & Agahi, Hamzeh & Mehri-Dehnavi, Hossein, 2019. "A novel word ranking method based on distorted entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 484-492.
    3. Trottini, Mario & Muralidhar, Krish & Sarathy, Rathindra, 2011. "Maintaining tail dependence in data shuffling using t copula," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 420-428, March.
    4. Amanda M. Y. Chu & Benson S. Y. Lam & Agnes Tiwari & Mike K. P. So, 2019. "An Empirical Study of Applying Statistical Disclosure Control Methods to Public Health Research," IJERPH, MDPI, vol. 16(22), pages 1-17, November.
    5. Rathindra Sarathy & Krishnamurty Muralidhar & Rahul Parsa, 2002. "Perturbing Nonnormal Confidential Attributes: The Copula Approach," Management Science, INFORMS, vol. 48(12), pages 1613-1627, December.
    6. Rathindra Sarathy & Krishnamurty Muralidhar, 2002. "The Security of Confidential Numerical Data in Databases," Information Systems Research, INFORMS, vol. 13(4), pages 389-403, December.
    7. Templ, Matthias & Kowarik, Alexander & Meindl, Bernhard, 2015. "Statistical Disclosure Control for Micro-Data Using the R Package sdcMicro," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i04).
    8. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    9. Kokolakis, G. & Fouskakis, D., 2009. "Importance partitioning in micro-aggregation," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2439-2445, May.
    10. Haibing Lu & Jaideep Vaidya & Vijayalakshmi Atluri & Yingjiu Li, 2015. "Statistical Database Auditing Without Query Denial Threat," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 20-34, February.
    11. Manuel A. Nunez & Robert S. Garfinkel & Ram D. Gopal, 2007. "Stochastic Protection of Confidential Information in Databases: A Hybrid of Data Perturbation and Query Restriction," Operations Research, INFORMS, vol. 55(5), pages 890-908, October.
    12. Xiao-Bai Li & Sumit Sarkar, 2006. "Privacy Protection in Data Mining: A Perturbation Approach for Categorical Data," Information Systems Research, INFORMS, vol. 17(3), pages 254-270, September.
    13. Heng Xu & Nan Zhang, 2022. "Implications of Data Anonymization on the Statistical Evidence of Disparity," Management Science, INFORMS, vol. 68(4), pages 2600-2618, April.
    14. Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    15. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    16. Krishnamurty Muralidhar & Rathindra Sarathy, 2006. "Data Shuffling--A New Masking Approach for Numerical Data," Management Science, INFORMS, vol. 52(5), pages 658-670, May.
    17. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:30:y:2002:i:5:p:367-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.